Skip to main content
Log in

Rasch ablaufende Änderungen im Gehalt an löslichen Zuckern und Zellwandkohlenhydraten bei der phytochrominduzierten Photomorphogenese des Senfkeimlings (Sinapis alba L.)

Short term changes in soluble sugar and cell-wall carbohydrate content during phytochrome mediated photomorphogenesis in the mustard seedling (Sinapis alba L.)

  • Published:
Planta Aims and scope Submit manuscript

Summary

Short term changes in the soluble sugar, starch, and cell-wall carbohydrate content of the mustard seedling have been studied in the different organs during phytochrome induced photomorphogenesis in continuous far-red. The program was: imbibition of seeds →36 hrs dark → far-red irradiation. Kinetics have been followed up to 12 hrs after the onset of irradiation.

There are no substantial changes in carbohydrate content in the cotyledons and the radicle. In the cotyledons in far-red after a lag-phase of 3 hrs, there is a decrease in oligosaccharide content, and after a lag-phase of 6 hrs, an increase in cell-wall synthesis. The reducing sugar and starch content is not altered upon irradiation. In the radicle immediately after the onset of far-red, there is a temporary rise in the reducing sugar and cell-wall carbohydrate content. However, 6 hrs later the values in far-red again parallel those of the dark control.

The important phytochrome dependent changes take place in the hypocotyl. In far-red after a lag-phase of 3 hrs the glucose accumulation is markedly retarded, the sucrose and starch content no longer increased, and the fructose content even decreases below the 3 hrs value. The glucose: fructose ratio, which is constant in dark, is shifted in favour of glucose. The lag-phase of phytochrome controlled hypocotyl elongation is about 1 hr, the lag-phase of the inhibition of cell-wall carbohydrate synthesis is in about the same order of magnitude.

There seems to be neither any immediate connection between sugar content and cell-wall carbohydrate synthesis, as shown by the difference in lag-phases, nor does there seem to be any direct relationship between hypocotyl inhibition and overall synthesis of cell-wall material. The relative inhibition of cell-wall synthesis is less than one third of that of hypocotyl elongation (Figs. 5,6). Apparently phytochrome controls hypocotyl elongation by influencing the cell-wall structure.

In spite of the fact that fat degradation is higher in far-red than in dark and respiration higher in dark than in far-red (Friederich, 1968), 6 hrs after the onset of far-red the increase of total carbohydrate content declines compared with that in dark. This finding leads to the conclusion that the efficiency of the fat-carbohydrate-transformation is higher in dark than in far-red.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Bertsch, W., u. H. Mohr: Die Unabhängigkeit der lichtinduzierten Anthocyansynthese von der Photosynthese. Planta (Berl.) 65, 17–26 (1965).

    Google Scholar 

  • Clarkson, D. T., and W. S. Hillman: Stability of phytochrome concentration in dicotyledonous tissues under continuous far-red light. Planta (Berl.) 75, 286–290 (1967).

    Google Scholar 

  • Dische, Z.: A new specific color reaction of hexuronic acids. J. biol. Chem. 167, 189–198 (1947).

    Google Scholar 

  • Friederich, K. E.: Untersuchungen zur Energetik bei der phytochromabhängigen Photomorphogenese des Senfkeimlings (Sinapis alba L.). Diss. Univ. Freiburg i. Br. (1968).

  • Hartmann, K. M.: A general hypothesis to interpret “high energy phenomena” of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol. 5, 349–366 (1966).

    Google Scholar 

  • —: Phytochrome 730 (Pfr), the effector of the “high energy photomorphogenic in the far-red region. Naturwissenschaften 54, 544 (1967).

    Google Scholar 

  • Hendricks, S. B., and H. A. Borthwick: The function of phytochrome in regulation of plant growth. Proc. nat. Acad. Sci. (Wash.) 58, 2125–2130 (1967).

    Google Scholar 

  • Hock, B., E. Kühnert u. H. Mohr: Die Regulation von Fettabbau und Atmung bei Senfkeimlingen durch Licht (Sinapis alba L.). Planta (Berl.) 65, 129–138 (1965).

    Google Scholar 

  • —, u. H. Mohr: Eine quantitative Analyse von Wachstumsvorgängen im Zusammenhang mit der Photomorphogenese von Senfkeimlingen (Sinapis alba L.). Planta (Berl.) 65, 1–16 (1965).

    Google Scholar 

  • Kretschmer, K.: Zur Spezifität der Kohlenhydratbestimmung in Proteinen mit der Anthronmethode. Hoppe-Seilers Z. physiol. Chem. 341, 146–148 (1965).

    Google Scholar 

  • Lange, H., I. Bienger u. H. Mohr: Eine neue Beweisführung für die Hypothese einer differentiellen Genaktivierung durch Phytochrom 730. Planta (Berl.) 76, 359–366 (1967).

    Google Scholar 

  • McCready, R. M., J. Guggolz, V. Silveriera, and H. S. Owens: Determinations of starch and amylose in vegetables. Anal. Chem. 22, 1156–1158 (1950).

    Google Scholar 

  • Meijer, G.: Rapid growth inhibition of gherkin hypocotyls in blue light. Acta bot. néerl. 17, 9–14 (1968).

    Google Scholar 

  • Mohr, H.: Untersuchungen zur phytochrominduzierten Photomorphogenese des Senfkeimlings (Sinapis alba L.). Z. Pflanzenphysiol. 54, 63–83 (1966).

    Google Scholar 

  • —, Ch. Holderied, W. Link u. K. Roth: Protein- und RNS-Gehalt des Hypokotyls beim stationären Wachstum im Dunkeln und unter dem Einfluß von Phytochrom (Keimlinge von Sinapis alba L.). Planta (Berl.) 76, 348–358 (1967).

    Google Scholar 

  • Mohr, H. u. E. Peters: Der Phototropismus und das lichtabhängige Längenwachstum des Hypokotyls von Sinapis alba L. Planta (Berl.) 55, 637–646 (1960).

    Google Scholar 

  • Nelson, N.: A photometric adaption of the Somogyi method for the determination of glucose. J. biol. Chem. 153, 375–380 (1944).

    Google Scholar 

  • Northcote, D. H., and J. D. Pickett-Heaps: A function of the Golgi apparatus in polysaccharide synthesis and transport in the root-cap cells of wheat. Biochem. J. 98, 159–167 (1966).

    Google Scholar 

  • Putmann, E. W., and W. Z. Hassid: Sugar transformation in leaves of Canna indica. J. biol. Chem. 207, 885–902 (1954).

    Google Scholar 

  • Rissland, I., u. H. Mohr: Phytochrom-induzierte Enzymbildung (Phenylalanindesaminase), ein schnell ablaufender Prozeß. Planta (Berl.) 77, 239–249 (1967).

    Google Scholar 

  • Roe, J. H.: A colorimetric method for determination of fructose in blood and urine. J. biol. Chem. 107, 15–22 (1934).

    Google Scholar 

  • Schnepf, E.: Quantitative Zusammenhänge zwischen der Sekretion des Fangschleims und den Golgi-Strukturen bei Drosophyllum lusitanicum. Z. Naturforsch. 16b, 605–610 (1961).

    Google Scholar 

  • Schopfer, P.: Der Einfluß von Actinomycin D und Puromycin auf die phytochrominduzierte Wachstumshemmung des Hypokotyls beim Senfkeimling (Sinapis alba L.). Planta (Berl.) 72, 306–320 (1967).

    Google Scholar 

  • Steiner, A. M.: Änderungen des Kohlenhydratgehalts in den Organen des Senfkeimlings (Sinapis alba L.) im Dauerdunkelrot unter dem Einfluß von Phytochrom. Z. Pflanzenphysiol. (im Druck).

  • Wagné, C.: The distribution of the light effect from irradiated to non-irradiated parts of grass leaves. Physiol. Plant. 18, 1001–1006 (1965).

    Google Scholar 

  • Weidner, M.: Der DNS-Gehalt von Kotyledonen und Hypokotyl des Senfkeimlings (Sinapis alba L.) bei der phytochromgesteuerten Photomorphogenese. Planta (Berl.) 75, 94–98 (1967).

    Google Scholar 

  • Yemm, E. W., and A. J. Willis: The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57, 508–514 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, A.M. Rasch ablaufende Änderungen im Gehalt an löslichen Zuckern und Zellwandkohlenhydraten bei der phytochrominduzierten Photomorphogenese des Senfkeimlings (Sinapis alba L.). Planta 82, 223–234 (1968). https://doi.org/10.1007/BF00398201

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00398201

Navigation