Letters in Mathematical Physics

, Volume 16, Issue 1, pp 27–37 | Cite as

Gauge invariant quantities for a Higgs model with gauge group SU(3)

  • Gerd Rudolph


A complete set of gauge invariant quantities for generic configurations of the theory of an SU(3) gauge field interacting with a Higgs field in the fundamental representation is constructed. Among the invariants, there appear quantities of a nontensorial type reflecting the nontrivial topological structure of the gauge orbit space. In the terminology introduced by Mandelstam, our description of classes of gauge invariant configurations corresponds to the superconductivity phase of this model containing magnetic monopoles which are confined by magnetic vortices.


Vortex Statistical Physic Gauge Group Group Theory Topological Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    GribovV. N., Nucl. Phys. B139, 1–19 (1978).Google Scholar
  2. 2.
    SingerI. M., Commun. Math. Phys. 60, 7–12 (1978).Google Scholar
  3. 3.
    MitterP. K. and VialletC. M., Commun. Math. Phys. 79, 457–472 (1981).Google Scholar
  4. 4.
    BabelonO. and VialletC. M., Phys. Lett. 85B, 246–252 (1979).Google Scholar
  5. 5.
    Kondracki, W. and Rogulski, J., prepr. 62/83/160, Inst. of Math., PAN, Warsaw (1983).Google Scholar
  6. 6.
    MitterP. K., Cargese lectures (1979), in G. 'tHooft et al. (eds.), Recent Development in Gauge Theories, Plenum Press, New York (1980).Google Scholar
  7. 7.
    KijowskiJ. and RudolphG., Rep. Math. Phys. 21, 309–329 (1985).Google Scholar
  8. 8.
    KijowskiJ. and RudolphG.: J. Geom. Phys. 2, 25–33 (1985).Google Scholar
  9. 9.
    KijowskiJ. and RudolphG., Phys. Rev. D 31, 856–864 (1985).Google Scholar
  10. 10.
    Bialynicki-BirulaI., Phys. Rev. D 3, 2413–2415 (1971).Google Scholar
  11. 11.
    MandelstamS., Ann. Phys. 19, 1–25 (1962).Google Scholar
  12. 12.
    Takabayashi, T., Suppl. Progr. Theor. Phys., No. 4, 1–80 (1957).Google Scholar
  13. 13.
    JakubiecA., Lett. Math. Phys. 9, 171–182 (1985).Google Scholar
  14. 14.
    MickelssonJ., Czech. J. Phys. B32, 521–528 (1982).Google Scholar
  15. 15.
    KijowskiJ. and RudolphG., Wiss. Z. Karl-Marx-Univ. Leipzig, Math. Naturwiss. Reihe 30, 613–621 (1981).Google Scholar
  16. 16.
    Mandelstam, S., in Monopoles in Quantum Field Theory, Proc. of the Monopole Meeting Trieste (1981), p. 289.Google Scholar
  17. 17.
    't HooftG., Nucl. Phys. B138, 1–25 (1978).Google Scholar
  18. 18.
    MandelstamS., Phys. Rep. 23, 245 (1976).Google Scholar
  19. 19.
    Trautman, A., Rep. Math. Phys., 29–50 (1970).Google Scholar
  20. 20.
    Trautman, A., Gen. Rel. Grav., 287–308 (1980).Google Scholar
  21. 21.
    KobayashiS. and NomizuK., Foundations of Differential Geometry, Vol. 1, Interscience, New York (1963).Google Scholar
  22. 22.
    ArfuneJ., FreundP. G. O., and GoebelC. J., J. Math. Phys. 16, 433–437 (1975).Google Scholar
  23. 23.
    DobrevV. K., Lett. Math. Phys. 6, 161–165 (1982).Google Scholar
  24. 24.
    Kijowski, J. and Rudolph, G., The functional integral on the gauge orbit space for a non-Abelian Higgs model (to appear).Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Gerd Rudolph
    • 1
  1. 1.Sektion Physik und Naturwissenchaftlich-Theoretisches Zentrum der Karl-Marx-Universität LeipzigLeipzigGermany

Personalised recommendations