Skip to main content
Log in

RNA:DNA ratios of the hydrothermal-vent vestimentiferans Ridgeia piscesae and R. phaeophiale indicate variations in growth rates over small spatial scales

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The ratio of RNA to DNA (RNA:DNA) was used to assess the relative growth rates of the hydrothermal vent vestimentiferans Ridgeia piscesae Jones and R. phaeophiale Jones. This biochemical indicator of growth is especially valuable when actual growth rates are difficult to measure. Tubeworms were collected from five hydrothermally active sites along the Juan de Fuca Ridge, in the Northeast Pacific Ocean in the summers of 1984 and 1986. We found significant variation in RNA:DNA among Ridgeia spp. from the five sites which was not due to size of the tubeworms or to a species-specific difference. Instead, differences in RNA:DNA were related to site of collection. Mean RNA:DNAs of 2.1 and 3.9 for R. piscesae from two sites were significantly different from each other, but not from that of tubeworms from a third site (mean=2.9). Similarly, mean RNA:DNAs of 2.3 and 4.5 for R. phaeophiale from two sites were significantly different. These patterns in RNA:DNA may reflect differences in growth rates arising from variation in environmental factors over spatial scales as small as 2 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Arp, A. J., Childress, J. J., Fisher, C. R., Jr. (1984). Metabolic and blood gas transport characteristics of the hydrothermal vent bivalve Calyptogeng magnifica. Physiol. Zoöl. 57: 648–662

    Google Scholar 

  • Buckley, L. J. (1984). RNA-DNA ratio: an index of larval fish growth in the sea. Mar. Biol. 80: 291–298

    Google Scholar 

  • Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., Waterbury, J. B. (1981). Prokaryotic cells in the hydrothermal vent tubeworm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, N.Y. 213: 340–342

    Google Scholar 

  • Davis, E. E., Currie, R. G., Riddihough, R. P., Sawyer, B. S. (1985). A new look at the Juan de Fuca Ridge: high resolution bathymetry and side-scan acoustic imagery. Geos (Ottawa) 14: 10–15

    Google Scholar 

  • Felbeck, H. (1981). Chemoautotrophic potential of the hydrothermal vent tubeworm Riftia pachyptila Jones (Vestimentifera). Science, N.Y. 213: 336–338

    Google Scholar 

  • Fisher, C. R., Jr., Childress, J. J. (1984). Substrate oxidation by trophosome tissue from Riftia pachyptila Jones (phylum Pogonophora). Mar. Biol. Lett. 5: 171–183

    Google Scholar 

  • Grassle, J. F. (1985). Hydrothermal vent distribution and biology. Science, N.Y. 229: 713–717

    Google Scholar 

  • Hessler, R. R., Smithey, W. R., Jr. (1983). The distribution and community structure of megafauna at the Galapagos rift hydrothermal vents. In: Rona P. A. et al. (ed.) Hydrothermal processes at seafloor spreading centers. Plenum Press, New York, p. 735–770

    Google Scholar 

  • Hettmansperger, T. P. (1984). Statistical inference based on ranks. John Wiley & Sons, New York

    Google Scholar 

  • Holm-Hansen, O. (1969). Algae: amounts of DNA and organic carbon in single cells. Science, N.Y. 163: 87–88

    Google Scholar 

  • Jannasch, H. W., Mottl, M. (1985). Geomicrobiology of deep-sea hydrothermal vents. Science, N.Y. 229: 717–725

    Google Scholar 

  • Johnson, K. S., Beehler, C. L., Sakamoto-Arnold, C. M., Childress, J. J. (1986). In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Science, N.Y. 231: 1139–1141

    Google Scholar 

  • Jones, M. L. (1985). The vestimentiferans of the Eastern Pacific with comments on specimens from the Gulf of Mexico. Bull. biol. Soc. Wash. 1985 (6): 117–158

    Google Scholar 

  • Karsten, U., Wollenberger, A. (1977). Improvements in the ethidium bromide method for direct fluorometric estimation of DNA and RNA in cell and tissue homogenates. Analyt. Biochem. 77: 464–470

    Google Scholar 

  • Kennell, D., Magasanik, B. (1962). The relation of ribosome content to the rate of enzyme synthesis in Aerobacter aerogenes. Biochim. biophys. Acta 55: 139–151

    Google Scholar 

  • Lehninger, A. L. (1975) Biochemistry. Worth Publishers, New York

    Google Scholar 

  • Lilley, J., Baross, J. A., Gordon, L. I. (1983). Reduced gases and bacteria in hydrothermal fluids: the Galapagos spreading center and 21 °N East Pacific Rise. In: Rona P. A. et al. (ed.) Hydrothermal processes at seafloor spreading centers. Plenum Press, New York, p. 411–449

    Google Scholar 

  • Lutz, R. A., Fritz, L. W., Rhoads, D. C. (1985). Molluscan growth at deep-sea hydrothermal vents. Bull. biol. Soc. Wash. 1985 (6): 119–210

    Google Scholar 

  • Meinke, W., Goldstein, D. A., Hall, M. R. (1974). Rapid isolation of mouse DNA from cells in tissue culture. Analyt. Biochem. 58: 82–88

    Google Scholar 

  • Regnault M., Luquet, P. (1974). Study by evolution of nucleic acid content of prepuberal growth in the shrimp Crangon vulgaris. Mar. Biol. 25: 291–298

    Google Scholar 

  • Rhoads, D. C., Lutz, R. A., Revelas, E. C., Cerrato, R. M. (1981). Growth of bivalves at deep-sea hydrothermal vents along the Galapagos Rift. Science, N.Y. 214: 911–913

    Google Scholar 

  • Smith, K. L., Jr. (1985). Deep-sea hydrothermal vent mussels: nutritional state and distribution at the Galapagos Rift. Ecology 66: 1067–1080

    Google Scholar 

  • Sutcliffe, W. H., Jr. (1970). Relationship between growth rate and ribonucleic acid concentration in some invertebrates. J. Fish. Res. Bd Can. 27: 606–609

    Google Scholar 

  • Tate, M. W., Clelland, R. C. (1957). Nonparametric and shortcut statistics in the social, biological and medical sciences. Interstate Printers & Publishers, Danville

    Google Scholar 

  • Tunnicliffe, V., Juniper, S. K., deBurgh, M. E. (1985). The hydrothermal vent community on axial seamount, Juan de Fuca Ridge. Bull. biol. Soc. Wash. 1985 (6): 453–464

    Google Scholar 

  • Turekian, K. K., Cochran, J. K. (1981). Growth rate of a vesicomvid clam from the Galapagos spreading center. Science, N.Y. 214: 909–911

    Google Scholar 

  • Turekian, K. K., Cochran, J. K., Bennett, J. T. (1983). Growth rate of a vesicomyid clam from the 21 °N East Pacific Rise hydrothermal area. Nature, Lond. 303: 55–56

    Google Scholar 

  • Tuttle, J. H. (1985). The role of sulfur-oxidizing bacteria at deep-sea hydrothermal vents. Bull. biol. Soc. Wash. 1985 (6): 335–343

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P.C. Schroeder, Pullman

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeBevoise, A.E., Taghon, G.L. RNA:DNA ratios of the hydrothermal-vent vestimentiferans Ridgeia piscesae and R. phaeophiale indicate variations in growth rates over small spatial scales. Mar. Biol. 97, 421–426 (1988). https://doi.org/10.1007/BF00397772

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00397772

Keywords

Navigation