Marine Biology

, Volume 91, Issue 1, pp 59–68 | Cite as

Chemical induction of larval settlement and metamorphosis in the reef-building tube worm Phragmatopoma californica (Sabellariidae: Polychaeta)

  • J. R. Pawlik


Naturally-occurring lipophilic inducers of larval settlement and metamorphosis wer isolated and identified for Phragmatopoma californica, a gregarious tube worm from southern California. Organic solvent extraction of the sand/organic cement matrix of tubes diminished the inducing capacity of the tube matrix. The inducing capacity was restricted to a single, highly active, HPLC-purified fraction of the organic solvent extract. Chemical analysis of this fraction revealed a mixture of free fatty acids (FFAs), dominated by eicosapentaenoic acid (20:5, ∼20%), palmitic acid (16:0, ∼14%) and palmitoleic acid (16:1, ∼12%). In assays of the nine FFAs that each contributed 3% or more to the active fraction, only 16:1, 18:2, 20:4 and 20:5 induced larval settlement and metamorphosis, while the others were ineffective. The larval response was contact-dependent, highly specific, and concentration-dependent, with a significant response to 16:1 and 20:4 at as low as 10 μg FFA spread onto 1 g of sand (surface area ⋟36 cm2). Active FFAs were extracted at approximately 14 μg g-1 sand from the tube matrix, although the levels encountered by larvae in nature are believed to be higher.


Chemical Analysis Free Fatty Acid Solvent Extract Palmitic Acid Significant Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Achari, G. P. K.: Polychaetes of the family Sabellariidae with special reference to their intertidal habitat. Proc. Indian natn. Sci. Acad. 1972 (Pt. B: Biol. Sciences) 38, 442–455 (1974)Google Scholar
  2. Augener, H.: Polychaeta. 3. Polychaeten von Neuseeland. 2. Sedentaria. Vidensk. Meddr dansk. naturh. Foren. 81, 157–294 (1926)Google Scholar
  3. Crisp, D. J.: Overview of research on marine invertebrate larvae, 1940–1980. In: Marine biodeterioration: an interdisciplinary study, pp 103–126. Ed by J. D. Costlow and R. C. Tipper. Annapolis, Md: Naval Institute Press 1981Google Scholar
  4. Day, J. H.: A monograph on the Polychaeta of southern Africa. Part 2. Sedentaria, 878 pp. London: British Museum 1967Google Scholar
  5. DeBarr, H. J. W., J. W. Farrington and S. G. Wakeham: Vertical flux of fatty acids in the North Atlantic Ocean. J. mar. Res. 41, 19–41 (1983)Google Scholar
  6. DeMort, C. L., R. Lowry, I. Tinsley and H. K. Phinney: The biochemical analysis of some estuarine phytoplankton species. I. Fatty acid composition. J. Phycol. 8, 211–216 (1972)Google Scholar
  7. Dollfus, R. P.: Sur un récif actuel: le banc des Hermelles de la baie de Mont-Saint-Michel. Bull. Soc. géol. Fr. 2(7), 133–140 (1960)Google Scholar
  8. Eckelbarger, K. J.: Metamorphosis and settlement in the Sabellariidae. In: Settlement and metamorphosis of marine invertebrate larvae, pp 145–164. Ed by F.-S. Chia and M. Rice. New York: Elsevier 1978Google Scholar
  9. Gore, R. H., L. E. Scotto and L. J. Becker: Community composition, stability, and trophic partitioning in decapod crustaceans inhabiting some subtropical sabellariid worm reefs. Bull. mar. Sci. 28, 221–248 (1978)Google Scholar
  10. Gram, R.: A Florida Sabellariidae reef and its effect on sediment distribution. J. sedim. Petrol. 38, 863–868 (1968)Google Scholar
  11. Gruet, Y.: Morphologie, croissance et faune associée des récifs de Sabellaria alveolata (Linné) de la Bernerie-en-Retz (Loire Atlantique). Téthys 3, 321–380 (1971)Google Scholar
  12. Guillard, R. R. L.: Culture of phytoplankton for feeding marine invertebrates. In: Culture of marine invertebrate animals, pp 29–60. Ed by W. L. Smith and M. H. Chanley. New York: Plenum Press 1975Google Scholar
  13. Hadfield, M. G.: Settlement requirements of molluscan larvae: new data on chemical and genetic roles. Aquaculture, Amsterdam 39, 283–298 (1984)Google Scholar
  14. Hansen, K.: Insect chemoreception. In: Receptors and recognition. Ser. B. Vol. 5. Taxis and behavior, pp 233–294. Ed by G. L. Hazelbauer. London: Chapman & Hall 1978Google Scholar
  15. Hartman, O.: Polychaetous annelids, family Sabellariidae. Allan Hancock Pacif. Exped. 10, 323–389 (1944)Google Scholar
  16. Hoering, T. C. and P. H. Abelson: Fatty acids from the oxidation of kerogen. Yb. Carnegie Instn Wash. 64, 218–223 (1965)Google Scholar
  17. Hollenberg, M. D. and P. Cuatrecasas: Distinction of receptor from nonreceptor interactions in binding studies. In: The receptors: a comprehensive treatise, Vol. 1. pp 193–214. Ed by R. D. O'Brien. New York: Plenum Press 1979Google Scholar
  18. Horne, D. J.: The ostracod fauna of an intertidal Sabellaria reef at Blue Anchor, Somerset, England. Estuar. cstl Shelf Sci. 15, 671–678 (1982)Google Scholar
  19. Jensen, R. A. and D. E. Morse: Intraspecific facilitation of larval recruitment: gregarious settlement of the polychaete Phragmatopoma californica (Fewkes). J. exp. mar. Biol. Ecol. 83, 107–126 (1984)Google Scholar
  20. Kato, T., A. S. Kumanireng, I. Ichinose, Y. Kitahara, Y. Kakinuma, M. Nishihira and M. Kato: Active components of Sargassum tortile effecting the settlement of swimming larvae of Coryne uchidai. Experientia 31, 433–434 (1975)Google Scholar
  21. Keck, R., D. Maurer, J. C. Kauer and W. A. Sheppard: Chemical stimulants affecting larval settlement in the American oyster. Proc. natn. Shellfish. Ass. 61, 24–28 (1971)Google Scholar
  22. Kirchman, D., S. Graham, D. Reish and R. Mitchell: Lectins may mediate in the settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaeta: Spirorbidae). Mar. Biol. Lett. 3, 131–142 (1982)Google Scholar
  23. Kirtley, D. W.: Worm reefs as related to beach stabilization. Shore Beach 35, 31–34 (1967)Google Scholar
  24. Kirtley, D. W. and W. F. Tanner: Sabellariied worms: builders of a major reef type. J. sedim. Petrol. 38, 73–78 (1968)Google Scholar
  25. Knight-Jones, E. W.: Laboratory experiment on gregariousness during setting in Balanus balanoides and other barnacles. J. exp. Biol. 30, 584–599 (1953)Google Scholar
  26. Larman, V. N.: Protein extracts from some marine animals which promote barnacle settlement: possible relationship between a protein component of arthropod cuticle and actin. Comp. Biolchem. Physiol. 77B, 73–81 (1984)Google Scholar
  27. Morse, A. N. C., C. A. Froyd and D. E. Morse: Molecules from cyanobacteria and red algae that induce larval settlement and metamorphosis in the mollusc Haliotis rufescens. Mar. Biol. 81, 293–298 (1984)Google Scholar
  28. Morse, D. E., N. Hooker and H. Duncan: GABA induces metamorphosis in Haliotis. V: stereochemical specificity. Brain Res. Bull. (USA) 5, 381–387 (1980)Google Scholar
  29. Morse, D. E., N. Hooker, H. Duncan and L. Jensen: Gamma-aminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science, N.Y. 204, 407–410 (1979)Google Scholar
  30. Multer, H. G. and J. D. Milliman: Geologic aspects of sabellarian reefs, southeastern Florida. Bull. mar. Sci. 17, 257–267 (1967)Google Scholar
  31. Parker, P. L.: Fatty acids and alcohols. Chapter 14. In: Organic geochemistry, pp 357–373. Ed by G. Eglinton and M. T. J. Murphy. New York: Springer-Verlag 1969Google Scholar
  32. Posey, M. H., A. M. Pregnall and R. A. Graham: A brief description of a subtidal sabellariid (Polychaeta) reef on the southern Oregon coast. Pacif. Sci. 38, 28–33 (1984)Google Scholar
  33. Sargent, J. R. and K. J. Whittle: Lipids and hydrocarbons in the marine food web. In: Analysis of marine ecosystems, pp 491–533. Ed by A. R. Longhurst. New York: Academic Press 1981Google Scholar
  34. Sasaki, G. C. and J. M. Capuzzo: Degradation of Artemia lipids under storage. J. Comp. Biochem. Physiol. 78B, 525–531 (1984)Google Scholar
  35. Scholl, D. W.: Effects of an arenaceous tube-building polychaete upon the sorting of a beach sand at Abalone Cove, California. Compass, Cambridge 35, 276–283 (1958)Google Scholar
  36. Shaw, N.: Lipid composition as a guide to the classification of bacteria. Adv. appl. Microbiol. 17, 63–108 (1974)Google Scholar
  37. Smith, P. R. and F.-S. Chia: Larval development and metamorphosis of Sabellaria cementarium Moore, 1906 (Polychaeta: Sabellariidae). Can. J. Zool. 63, 1037–1049 (1985)Google Scholar
  38. Sokal, R. R. and F. J. Rohlf: Biometry. The principles and practice of statistics in biological research, 2nd ed. 859 pp. San Francisco: W. H. Freeman & Co. 1981Google Scholar
  39. Still, W. C., M. Kahn and A. Mitra: Rapid chromatographic technique for preparative separations. J. org. Chem. 43, 2923–2925 (1978)Google Scholar
  40. Taylor, P. R. and M. M. Littler: The roles of compensatory mortality, physical disturbance, and substrate retention in the development and organization of a sand-influenced, rocky-intertidal community. Ecology 63, 135–146 (1982)Google Scholar
  41. Veitch, F. P. and H. Hidu: Gregarious setting in the American oyster Crassostrea virginica Gmelin: I. Properties of a partially purified “setting factor”. Chesapeake Sci. 12, 173–178 (1971)Google Scholar
  42. Volkman, J. K., R. B. Johns, F. T. Gillan and G. J. Perry: Microbial lipids of an intertidal sediment. I. Fatty acids and hydrocarbons. Geochim. cosmochim. Acta 44, 1133–1143 (1980)Google Scholar
  43. Vovelle, J.: Le tube de Sabellaria alveolata (L.) annélide polychète Hermillidae et son ciment étude ecologique, expérimentale, histologique et histochemique. Archs Zool. exp. gén. 106, 1–187 (1965)Google Scholar
  44. Wilson, D. P.: The settlement behaviour of the larvae of Sabellaria alveolata (L.). J. mar. biol. Ass. U.K. 48, 387–435 (1968)Google Scholar
  45. Wilson, D. P.: Additional observations on larval growth and settlement of Sabellaria alveolata. J. mar. biol. Ass. U.K. 50, 1–31 (1970)Google Scholar
  46. Wilson, D. P.: Sabellaria colonies at Duckpool, North Cornwall, 1961–1970. J. mar. biol. Ass. U.K. 51, 509–580 (1971)Google Scholar
  47. Wood, B. J. B.: Fatty acids and saponifiable lipids. In: Algal physiology and biochemistry, pp 236–265. Ed. by W. D. P. Stewart. Los Angeles: U.C. Press 1974Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. R. Pawlik
    • 1
  1. 1.Scripps Institution of OceanographyLa JollaUSA

Personalised recommendations