Skip to main content
Log in

Pyridine nucleotides and redox-charge evolution during the induction of flowering in spinach leaves

  • Published:
Planta Aims and scope Submit manuscript

Abstract

In the long-day plant Spinacia oleracea changes in the pool size of pyridine nucleotides have been followed under different photoperiodic conditions. In short days (vegetative state), the dark and light phases of the cycle are characterized by specific reciprocal changes in NAD and NADP pool sizes. As a consequence, the ratios of NADH/NAD+NADH and NADPH/NADP+NADPH, which are respectively considered to represent the catabolic and anabolic state of metabolism, also show a characteristic pattern. Upon transfer to continuous light, i.e. during floral induction, a decrease in anabolic metabolism is paralleled by an increase in catabolic metabolism. In the floral state, both the catabolic and the anabolic couples of the pyridine nucleotides are considerably depressed, possibly reflecting the enhanced senescence of induced leaves. The results are discussed in relation to the involvment of the nucleotides in stoichiometric coupling of metabolic compartments at the cellular level in response to environmental signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MIT:

mimicked inductive treatment (inductive treatment on already induced plants)

PN:

pyridine nucleotides

References

  • Aellig, A., Maillard, M., Phavorin, A., Frei, J. (1977) The energy metabolism of the leukocyte. VIII. The determination of the concentration of the coenzymes NAD, NADH, NADP and NADPH in polymorphonuclear leukocytes at rest and after incubation by enzymatic cycling. Enzyme 22, 196–206

    Google Scholar 

  • Anderson, J.M., Charbonneau, H., Jones, H.P., McCann, R.O., Cormier, M.J. (1980) Characterization of the plant nicotineamide adenine dinucleotide kinase activator protein and its identification as calmodulin. Biochemistry 19, 3113–3120

    Google Scholar 

  • Atkinson, D.E. (1977) Cellular energy metabolism and its regulation. Academic Press, New York

    Google Scholar 

  • Bonzon, M., Buis, R., Greppin, H. (1975) Analyse factorielle de l'ultrastructure du chloroplaste d'épinard à l'état végétatif et floral. I. Jours courts de 8 heures. Bull. Soc. Bot. Suisse 85, 265–278

    Google Scholar 

  • Bonzon, M., Hug, M., Wagner, E., Greppin, H. (1981) Adenine nucleotides and energy charge evolution during the induction of flowering in spinach leaves. Planta 152, 189–194

    Google Scholar 

  • Buchanan, B.B. (1980) Role of light in the regulation of chloroplast enzymes. Annu. Rev. Plant Physiol. 66, 605–608

    Google Scholar 

  • Bünning, E. (1977) Die physiologische Uhr. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cohen, P. (1980) Molecular aspects of cellular regulation, vol. 1: Recently discovered systems of enzyme regulation by reversible phosphorylation, pp. 2–273, Cohen, P., ed. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • De Looze, S., Wagner, E. (1983a) In vitro and in vivo regulation of chloroplast glyceraldehyde-3-phosphate dehydrogenase isozymes from Chenopodium rubrum. I. Purification and properties of isozymes. Physiol. Plant. 57, 213–237

    Google Scholar 

  • De Looze, S., Wagner, E. (1983b) In vitro and in vivo regulation of chloroplast glyceraldehyde-3-phosphate dehydrogenase isozymes from Chenopodium rubrum. II. In vitro modulation of the isozyme pattern. Physiol. Plant. 57, 238–242

    Google Scholar 

  • De Looze, S., Wagner, E. (1983c) In vitro and in vivo regulation of chloroplast glyceraldehyde-3-phosphate dehydrogenase isozymes from Chenopodium rubrum. III. The molecular basis for the aggregation phenomenon: chloroplast glyceraldehyde-3-phosphate as an ambiquitous enzyme. Physiol. Plant. 57, 243–249

    Google Scholar 

  • Frosch, S., Wagner, E., Mohr, H. (1974) Control by phytochrome of the level of nicotinamide nucleotides in the cotyledons of the mustard seedlings. Z. Naturforsch. 296, 392–398

    Google Scholar 

  • Fujii, T., Kondo, N. (1969) Changes in the level of nicotinamide nucleotides in activities of NADP-dependent dehydrogenase after a brief illumination of red light. Dev. Growth Differ 11, 40–45

    Google Scholar 

  • Gahan, P.B., Auderset, G., Greppin, H. (1979) Pentose phosphate pathway activity during floral induction in Spinacia oleracea, var. Nobel. Ann. Bot. (London) 44, 121–124

    Google Scholar 

  • Goller, M., Hampp, R., Ziegler, H. (1982) Regulation of the cytosolic adenylate ratio as determined by rapid fractionation of mesophyll protoplasts of oat. Planta 156, 255–263

    Google Scholar 

  • Greppin, H., Auderset, G., Bonzon, M., Penel, C. (1978) Changement d'état membranaire et mécanisme de la floraison. Saussurea 9, 83–101

    Google Scholar 

  • Guynn, R., Gelberg, H.J., Veech, R.L. (1973) Equilibrium constants of the malate dehydrogenase, citrate synthase, citrate lyase, and acetyl coenzyme A hydrolysis reactions under physiological conditions. J. Biol. Chem. 20, 6957–6965

    Google Scholar 

  • Hampp, R., Goller, M., Ziegler, H. (1982) Adenylate levels, energy charge and phosphorylation potential during dark-light and light-dark transition in chloroplasts, mitochondria, and cytosol of mesophyll protoplasts from Avena sativa L. Plant Physiol. 69, 448–455

    Google Scholar 

  • Hershko, A., Mamont, P., Shields, R., Tomkins, G.M. (1971) “Pleiotypic response”. Nature (London), New Biol. 232, 206–211

    Google Scholar 

  • Jarrett, H.W., Brown, C.J., Black, C.C., Cormier, M.J. (1982) Evidence that calmodulin is in the chloroplast of peas and serves a regulatory role in photosynthesis. J. Biol. Chem. 257, 13795–13804

    Google Scholar 

  • Lazo, P.S., Barros, F., de la Pena, P., Ramos, S. (1981) Ion gradients as candidates for transmembrane signaling. Trends Biochem. Sci. 6, 83–86

    Google Scholar 

  • Lechevallier, D., Vermeersch, J., Monéger, R. (1977) Microanalyse du NADP et du NAD réduits et oxydés dans les tissus foliaires et dans les plastes isolés de Spirodèle et de Blé. Physiol. Vég. 15, 63–69

    Google Scholar 

  • Manabe, K., Furuya, M. (1974) Phytochrome-dependent reduction of nicotinamide nucleotides in the mitochondrial fraction isolated from etiolated pea epicotyls. Plant Physiol. 53, 343–347

    Google Scholar 

  • Marmé, D. (1981) Calcium, Calmodulin und ihre zelluläre Funktion. Biol. unserer Zeit 11, 71–77

    Google Scholar 

  • Muto, S., Miyachi, S., Usuda, H., Edwards, G.E., Bassham, J.A. (1981) Light-induced conversion of NAD to NADP in higher plant leaves. Plant Physiol. 63, 324–328

    Google Scholar 

  • Nishizuka, Y. (1980) Three multifunctional protein kinase systems in transmembrane control. In: Molecular biology, biochemistry and biophysics, vol. 32: chemical recognition in biology, pp. 113–135, Chaperville, F., Haenni, A.K., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Oh-Hama, T.S., Miyachi, S., Taniya, H. (1963) Photochemical conversion of TPN from DPN in Chlorella cells. In: La photosynthèse, pp. 439–448 Editions du CNRS, Paris

    Google Scholar 

  • Rasmussen, H. (1981) Calcium and cAMP as synarchic messengers. Wiley, New York

    Google Scholar 

  • Reich, J.G., E.E. Sel'kov (1981) Energy metabolism of the cell. A theoretical treatise. Academic Press, London

    Google Scholar 

  • Sachs, R., Bodson, M., Bonzon, M., Friend, D.J.C., Halevy, A.H., Imhoff, C., Joliffe, P.A., Kandeler, R., Larrieu, C., Mousseau, M., Paulet, P., Posner, H.B., Vallée, J.C., Wagner, E. (1979) Metabolism and energetics in flowering. In: Physiologie de la floraison, pp. 169–208, Colloques Int. CNRS, no. 285. Editions du CNRS, Paris

    Google Scholar 

  • Simon, P., Dieter, P., Bonzon, M., Greppin, H., Marmé, D. (1982) Calmodulin-dependent and independent NAD kinase activities from cytoplasmic and chloroplastic fractions of spinach (Spinacia oleracea L.). Plant Cell Rep. 1, 119–122

    Google Scholar 

  • Srere, P.A., Estabrook, R.W. (1978) Microenvironments and metabolic compartmentation. Academic Press, New York

    Google Scholar 

  • Srere, P.A., Mosbach, K. (1974) Metabolic compartmentation: symbiotic, organellar, multienzymic, and microenvironmental. Annu. Rev. Microbiol. 28, 61–83

    Google Scholar 

  • Tezuka, T., Yamamoto, Y. (1972) Photoregulation of nicotinamide adenine nucleotide kinase activity in cell-free extracts. Plant Physiol. 50, 458–462

    Google Scholar 

  • Valant, P.A. (1982) Does an increase in the ratio of cytoplasmic NADPH to NADP+ accompanied by a decrease in the ratio of cytoplasmic NADH to NAD+ mediate the actions of insulin? Med. Hypothesis 9, 183–192

    Google Scholar 

  • Wagner, E. (1977) Molecular basis of physiological rhythms. Symp. Soc. Exp. Biol. XXXI, 33–73

    Google Scholar 

  • Wagner, E., Bonzon, M., Greppin, H. (1982) Temporal organization of development and behaviour in plants as controlled by endogenous physiological cycles in resonance with rhythmic signals from the environment. In: Les mécanismes de l'irritabilité et du fonctionnement des rythmes chez les végétaux (colloque de Cartigny), pp. 75–124, Greppin, H., Wagner, E., eds. Centre de Botanique, Genève

    Google Scholar 

  • Wagner, E., Deitzer, G.F., Fischer, S., Frosch, S., Kempf, O., Stroebbele, L. (1975) Endogenous oscillations in pathways of energy transduction as related to circadian rhythmicity and photoperiodic control. Biosystems 7, 68–76

    Google Scholar 

  • Wagner, E., Frosch, S. (1974) Endogenous rhythmicity and energy transduction. VI. Rhythmicity in reduced and oxidized pyridine nucleotide levels in seedlings of Chenopodium rubrum. J. Interdiscipl. Cycle Res. 5, 231–239

    Google Scholar 

  • Wagner, E., Frosch, S., Kempf, O. (1974a) Endogenous rhythmicity and energy transduction. VII. Phytochrome-modulated rhythms in pyridine nucleotide levels in seedlings of Chenopodium rubrum. Plant Sci. Lett. 3, 43–48

    Google Scholar 

  • Wagner, E., Tetzner, J., Haertlé, U., Deitzer, G.F. (1974b) Endogenous rhythmicity and energy transduction. VIII. Kinetics in enzyme activity, redox state and energy charge as related to photomorphogenesis in seedlings of Chenopodium rubrum. Ber. Dtsch. Bot. Ges. 87, 291–302

    Google Scholar 

  • Wellburn, A.R. (1982) Bioenergetic and ultrastructural changes associated with chloroplast development. Int. Rev. Cytol. 80, 133–191

    Google Scholar 

  • White, J.M., Pike, C.S. (1974) Rapid phytochrome-mediated changes in adenosine 5′-triphosphate content of etiolated bean buds. Plant Physiol. 53, 76–79

    Google Scholar 

  • Williamson, D.H., Lund, P., Krebs, H.A. (1967) The redox state of free nicotine-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514–527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonzon, M., Simon, P., Greppin, H. et al. Pyridine nucleotides and redox-charge evolution during the induction of flowering in spinach leaves. Planta 159, 254–260 (1983). https://doi.org/10.1007/BF00397533

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00397533

Key words

Navigation