Skip to main content
Log in

Chlorotetracycline-binding surface regions in gemmalings of Riella helicophylla (Bory et Mont.) Mont.

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The unistratose thallus of the gemmaling of Riella helicophylla is divided into an apical growth lobe with the meristem, an intermediate pillar, and a basal rhizoidal lobe. This organization can be correlated with a distinct fluorescence pattern of wall and membrane after treatment with chlorotetracycline. Mature cells of the growth lobe are distinguished by two chlorotetracycline-binding surface regions (CSR) with a diameter of 6–12 μm in the middle of both outer cell surfaces. Meristematic cells are devoid of CSR. The same is true for cells of the pillar which elongate under low light intensity. Rhizoid initials have an enlarged CSR on the site where the rhizoidal tube will emerge, whereas the opposite cell surface lacks any chlorotetracycline fluorescence. With the beginning of the extension of the rhizoid, CSR remains as a ring around the base of the tube. Darkness, plasmolysis, and sulfhydryl reagents inhibit the fluorescence of CSR, whereas calcium antagonists in addition suppress the fluorescence of the rhizoids. Cytochemical methods demonstrate that sulfhydryl proteins and anionic polysaccharides are involved in adsorbing chlorotetracycline in this region. Surface electron-microscopic preparations reveal a local depression of the wall covered with amorphous material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APW:

artificial pond water

CTC:

chlorotetracycline

CSR:

chlorotetracycline-binding surface region

EGTA:

ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

Pipes:

1,4-piperazine diethanesulfonic acid

References

  • Bowmann, B.J., Slayman, C.W. (1979) The effect of vanadate on the plasma membrane ATPase of Neurospora. J. Biol. Chem. 254, 2928–2934

    Google Scholar 

  • Burgess, J., Linstead, P.J. (1982) Cell-wall differentiation during growth of electrically polarized protoplasts of Physcomitrella. Planta 156, 241–248

    Google Scholar 

  • Caswell, A.H. (1979) Methods of measuring intracellular calcium. Int. Rev. Cytol. 56, 145–181

    Google Scholar 

  • Dreyer, E.M., Weisenseel, M.H. (1979) Phytochrome mediated uptake of calcium in Mougeotia cell. Planta 146, 31–39

    Google Scholar 

  • Grotha, R., Stange, L. (1969) Ausmaß und räumliche Verteilung der nucleolären RNS-Synthese in Gewebefragmenten von Riella nach Blockierung der DNS-Synthese. Planta 86, 324–333

    Google Scholar 

  • Hendrix, D.L., Higinbotham, N. (1974) Heavy metals and sulphhydryl reagents as probes of ion uptake in pea stems. In: Membrane transport in plants, pp. 412–417, Zimmermann, U., Dainty, J., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jaffe, L.F. (1979) Control of development by ionic currents. In: Membrane transduction mechanisms, pp. 199–231, Cone, R.A., Dowling, J.E., eds. Raven Press, New York

    Google Scholar 

  • Kosower, N.S., Kosower, E.M., Newton, G.L., Ranney, H.M. (1979) Bimane fluorescent labels: labeling of normal human red cells under physiological conditions. Proc. Natl. Acad. Sci. USA 76, 3382–3386

    Google Scholar 

  • Luft, J.H. (1971) Ruthenium red and violett. I. Chemistry, purification, methods for use for electron microscopy and mechanisms of action. Anat. Rec. 171, 347–368

    Google Scholar 

  • Meindl, U. (1982a) Local accumulation of membrane-associated calcium according to cell pattern formation in Micrasterias denticulata visualized by chlorotetracycline fluorescence. Protoplasma 110, 143–146

    Google Scholar 

  • Meindl, U. (1982b) Patterned distribution of membrane-associated Ca2+ during pore formation in Micrasterias. Protoplasma 112, 138–141

    Google Scholar 

  • Nakazawa, S., Tsusaki, A. (1959a) Appearance of ‘metallophilic cytoplasm’ as a prepattern to the rhizoid differentiation in fern protonema. Cytologia 24, 378–388

    Google Scholar 

  • Nakazawa, S., Tsusaki, A. (1959b) Special cytoplasm detectable in fern rhizoids. Naturwissenschaften 46, 609–610

    Google Scholar 

  • Nehira, K. (1973) Adsorption of Ca in the differentiation of rhizoids in gemmae of Marchantia polymorpha L. Mem. Fac. Gen. Educ. Hiroshima Univ. III, vol 7, 1–6

    Google Scholar 

  • Nehira, K. (1982) Rhizoid formation in Marchantia gemmae. J. Hattori Bot. Lab. 53, 245–248

    Google Scholar 

  • Novotny, A.M., Forman, M. (1974) The relationship between changes in cell wall composition and the establishment of polarity in Fucus embryos. Dev. Biol. 40, 162–173

    Google Scholar 

  • Novotny, A.M., Forman, M. (1975) The composition and development of cell walls of Fucus embryos. Planta 122, 67–78

    Google Scholar 

  • Pearse, A.G.E. (1968) Histochemistry, theoretical and applied, vol. 1. Churchill Livingstone, Edinburgh London New York

    Google Scholar 

  • Quatrano, R.S. (1978) Development of cell polarity. Annu. Rev. Plant Physiol. 29, 487–510

    Google Scholar 

  • Schult, S. (1962) Wachstum, Differenzierung und Formbildung am Brutkörper von Riella affinis. Z. Bot. 59, 417–472

    Google Scholar 

  • Scott, J., Quintarelli, G., Dellovo, M. (1964) The chemical and histochemical properties of alcian blue. I. The mechanism of alcian blue staining. Histochemie 4, 73–85

    Google Scholar 

  • Smith, D.L. (1972) Staining and osmotic properties of young gametophytes of Polypodium vulgare L. and their bearing on rhizoid function. Protoplasma 74, 465–479

    Google Scholar 

  • Smith, D.L. (1979) Biochemical and physiological aspects of gametophyte differentiation and development. In: The experimental biology of ferns, pp. 355–392, Dyer, A.F., ed. Academic Press, New York London San Francisco

    Google Scholar 

  • Stange, L. (1957) Untersuchungen über Umstimmungs- und Differenzierungsvorgänge in regenerierenden Zellen des Lebermooses Riella. Z. Bot. 45, 197–244

    Google Scholar 

  • Studhalter, R.A., Cox, M.E. (1941) The gemma of Riella americana. Bryologist 43, 141–157

    Google Scholar 

  • Studhalter, R.A., Cox, M.E. (1941) The gemmaling of Riella americana I. Bryologist 44, 77–93

    Google Scholar 

  • Studhalter, R.A., Cox, M.E. (1942) The gemmaling of Riella americana II. Bryologist 45, 49–62

    Google Scholar 

  • Viell, B. (1977) Early metabolic changes in regenerating microfragments of the liverwort Riella helicophylla (Bory et Mont.) Mont.: protein and RNA synthesis, free α-amino acid concentration. Planta 137, 13–18

    Google Scholar 

  • Weisenseel, M.H., Nuccitelli, R., Jaffe, L.F. (1975) Large electrical currents traverse growing pollen tubes. J. Cell Biol. 66, 556–567

    Google Scholar 

  • Weisenseel, M.H. (1979) Induction of polarity. In: Encyclopedia of plant physiology, N.S. vol. 7: Physiology of movements, pp. 485–505, Haupt, W., Feinleib, M.E., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wolniak, S.M., Hepler, P.K., Jackson, W.T. (1980) Detection of membrane-calcium distribution during mitosis in Haemanthus endosperm with chlorotetracycline. J. Cell Biol. 87, 23–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Martin Bopp on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grotha, R. Chlorotetracycline-binding surface regions in gemmalings of Riella helicophylla (Bory et Mont.) Mont.. Planta 158, 473–481 (1983). https://doi.org/10.1007/BF00397238

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00397238

Key words

Navigation