Abstract
For a wide class of lagrangian systems we show rigorously that the conventional formulation of Noether's theorem provides a bijective map from the set of equivalence classes of Noether's symmetries onto the set of equivalence classes of conserved currents. We further discuss if Noether's theorem is generalized in a significant way by several formulations proposed in this decade.
Similar content being viewed by others
References
IbragimovN.H., Lett. Math. Phys. 1, 423 (1977).
IbragimovN.H., Theor. Mat. Phys. 1, 350 (1969).
CandottiE., PalmieriC., and VitaleB., Nuovo Cimento 70A, 233 (1970).
CandottiE., PalmieriC., and VitaleB., Nuovo Cimento 72A, 271 (1972).
RosenJ., Ann. Physics 69, 349 (1972).
RosenI., Ann. Physics 82, 54 (1974).
Gel'fandI.M., and DikiiL.A., Russian Math. Surveys 30:5, 77 (1975).
GalindoA., and Martinez AlonsoL., Lett. Math. Phys. 2, 385 (1978).
Steudel, H., Thesis, F-Schiller-Universität Jena, 1966.
HillE.L., Rev. Mod. Phys. 23, 253 (1951).
Noether, E., Gottingen Nachrichten, Math. Phys. Kl., 235 (1918).
Author information
Authors and Affiliations
Additional information
Partially supported by the Junta de Energia Nuclear, Madrid.
Rights and permissions
About this article
Cite this article
Martinez Alonso, L. On the Noether map. Lett Math Phys 3, 419–424 (1979). https://doi.org/10.1007/BF00397216
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00397216