Advertisement

Marine Biology

, Volume 66, Issue 3, pp 295–300 | Cite as

The relative significance of bacteria, meio- and macrofauna on an exposed sandy beach

  • K. Koop
  • C. L. Griffiths
Article

Abstract

A survey of the intertidal biota of a sandy beach on the west coast of South Africa has shown standing stocks of macrofauna, meiofauna and bacteria of 241.23, 200.17 and 663.07 g dry wt m-1 of shoreline respectively, an approximate biomass ratio of 1:1:3. The distribution of the macrofauna was the reverse of the usual pattern, with highest biomass occurring at the level of the current driftline. This appears to be related directly to the ready availability of food in the form of drift algae. Peak meiofaunal numbers were also found below the driftline and it is proposed that meiofaunal distribution is governed by dissolved organic matter (DOM) levels in the interstitial environment. Bacteria were abundant up to 1.2 m below the sediment surface, with the highest concentrations occurring at low tidal levels. The significance of the various biotic components in the energetics of the sandy intertidal is discussed. Turnover estimates suggest that bacteria may account for about 87% of annual production, with meiofauna and macrofauna making up 10 and 3% respectively. Despite this overwhelming importance of bacteria, the macro-and meiofauna probably play a vital role in making small organic particles available to bacteria for mineralization and in optimising conditions for microbial growth.

Keywords

Biomass Dissolve Organic Matter Dissolve Organic Matter Meiofauna Tidal Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Anderson, J. G. and P. S. Meadows: Bacteria on intertidal sand grains. Hydrobiologia 33, 33–45 (1969)Google Scholar
  2. Ansell, A. D., D. S. McLusky, A. Stirling and A. Trevallion: Production and energy flow in the macrobenthos of two sandy beaches in south west India. Proc. R. Soc. Edinburgh 76b, 269–296 (1978)Google Scholar
  3. Bally, R.: The ecology of three sandy beaches on the west coast of South Africa, 404 pp. Ph. D. thesis, University of Cape Town, Rondebosch 7700, South Africa 1981Google Scholar
  4. Brown, A. C.: The ecology of the sandy beaches of the Cape Peninsula, South Africa. Part I: Introduction. Trans. R. Soc. S. Afr. 39, 247–279 (1971)Google Scholar
  5. Dahl, E.: Some aspects of the ecology and zonation of the fauna on sandy beaches. Oikos 4, 1–27 (1952)Google Scholar
  6. Dale, N. G.: Bacteria on intertidal sediments: factors relating to their distribution. Limnol. Oceanogr. 19, 509–518 (1974)Google Scholar
  7. Day, J. H.: A guide to marine life on South African shores, 300 pp. Cape Town, A. A. Balkema 1969Google Scholar
  8. Fenchel, T.: Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum. Limnol. Oceanogr. 15, 14–20 (1970)Google Scholar
  9. Fenchel, T. and P. Harrison: The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus. In: The role of terrestrial and aquatic organisms in decomposition processes, pp 285–299. Ed. by J. M. Anderson and A. MacFadyen. Oxford: Blackwell Scientific Publications 1976Google Scholar
  10. Field, J. G., C. L. Griffiths, R. J. Griffiths, N. Jarman, P. Zoutendyk, B. Velimirov and A. Bowes: Variation in structure and biomass of kelp communities along the south-west cape coast. Trans. R. Soc. S. Afr. 44, 145–203 (1980)Google Scholar
  11. Fricke, A. H.: Meiofauna extraction efficiency by a modified Oostenbrink apparatus. Helgoländer wiss. Meeresunters. 32, 436–443 (1979)Google Scholar
  12. Gerlach, S. A.: On the importance of marine meifauna for benthos communities. Oecologia (Berl.) 6, 176–190 (1971)Google Scholar
  13. Gerlach, S. A.: Attraction to decaying organisms as a possible cause for patchy distribution of nematodes in a Bermuda beach. Ophelia 16, 151–165 (1977)Google Scholar
  14. Gerlach, S. A.: Food chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia (Berl.) 33, 55–69 (1978)Google Scholar
  15. Giere, O.: Population structure, food relations and ecological role of marine oligochaetes, with special reference to meiobenthic species. Mar. Biol. 31, 139–156 (1975)Google Scholar
  16. Griffiths, C. L. and J. Stenton-Dozey: The fauna and rate of degradation of stranded kelp. Estuar. coast. Shelf Sci. 12, 645–653 (1981)Google Scholar
  17. Hobbie, J. E., R. T. Daley and S. Jasper: Use of Nucleopore filters for counting bacteria by fluorescence microscopy. Appl. env. Microbiol. 33, 1225–1228 (1977)Google Scholar
  18. Jansson, B. O.: The “Umwelt” of the interstitial fauna. Smithson. Contr. Zool. 76, 129–140 (1971)Google Scholar
  19. Johannes, R. E.: The influence of marine protozoa on nutrient regeneration. Limnol. Oceanogr. 12, 189–195 (1965)Google Scholar
  20. Johnson, R. G.: Temperature variation in the infaunal environment of a sand flat. Limnol. Oceanogr. 10, 114–120 (1965)Google Scholar
  21. Koop, K. and J. G. Field: The influence of food availability on population dynamics of a supralittoral isopod Ligia dilatata Brandt. J. exp. mar. Biol. Ecol. 48, 61–72 (1980)Google Scholar
  22. Koop, K. and J. G. Field: Energy transformation by the supralittoral isopod Liga dilatata Brandt. J. exp. mar. Biol. Ecol. 53, 221–233 (1981)Google Scholar
  23. Koop, K., R. C. Newell and M. I. Lucas: Biodegradation and carbon flow based on kelp debris (Ecklonia maxima) in a sandy beach microcosm. Mar. Ecol. Prog. Ser. (1982)Google Scholar
  24. Linley, E. A. S., R. C. Newell and S. Bosma: Heterotrophic utilisation of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida). I. Development of microbial communites associated with the degradation of kelp mucilage. Mar. Ecol. Prog. Ser. 4, 31–41 (1981)Google Scholar
  25. Lopez, G. R., J. S. Levinton and L. B. Slobodkin: The effect of grazing by the detritivore Orchestia grillus on Spartina litter and its associated microbial community. Oecologia (Berl.) 30, 111–127 (1977)Google Scholar
  26. Luria, S. E.: The bacterial protoplasm: composition and organization, pp 1–34. In: The bacteria, Vol. 1. Ed. by I. C. Gunsalus and R. Y. Stanier. New York: Academic Press 1960Google Scholar
  27. Marure, H. G. F.: The seasonal cycle of marine bacteria in a west coast kelp-bed. Trans. R. Soc. S. Afr. 43, 119–124 (1978)Google Scholar
  28. McIntyre, A. D.: Ecology of marine meiobenthos. Biol. Rev. 44, 245–290 (1969)Google Scholar
  29. McLachlan, A.: Studies on the psammolittoral meiofauna of Algoa Bay. I. Physical and chemical evaluation of the beaches. Zool. Afr. 12, 15–32 (1977a)Google Scholar
  30. Mclachlan, A.: Studies on the psammolittoral meiofauna of Algoa Bay. II. The distribution, composition and biomass of the meiofauna and macrofauna. Zool. Afr. 12, 33–60 (1977b)Google Scholar
  31. McLachlan, A.: Composition, distribution, abundance and biomass of the macrofauna and meiofauna of four sandy beaches. Zool. Afr. 12, 279–306 (1977c)Google Scholar
  32. McLachlan, A., A. H. Dye and P. van der Ryst.: Vertical gradients in the fauna and oxidation of two exposed sandy beaches. S. Afr. J. Zool. 14, 43–47 (1979)Google Scholar
  33. Muir, D. G.: The biology of Talorchestia capensis (Amphipoda: Talitridae), including a population energy budget, 94 pp. M. Sc. thesis, University of Cape Town, Rondebosch 7700, South Africa 1977Google Scholar
  34. Newell, R. C.: Biology of intertidal animals (3rd ed.) 781 pp. Faversham, U.K.: Marine Ecological Surveys 1979Google Scholar
  35. Newell, R. C., J. G. Field and C. L. Griffiths: Energy balance and the significance of micro-organisms in a kelp bed community. Mar. Ecol. Prog. Ser. (1982)Google Scholar
  36. Riemann, F. and M. Schrage: The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia (Berl.) 34, 75–88 (1978)Google Scholar
  37. Slavat, B.: Les conditions hydrodynamiques interstitielles des sediments meubles intertidaux et la repartition verticale de la faune endogee. C. R. Hebdomadaires Seances Acad. Sci. 259, 1576–1579 (1964)Google Scholar
  38. Tietjen, J. H.: Microbial-meiofaunal interrelationships: a review. Microbiology 335–338 (1980)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • K. Koop
    • 1
  • C. L. Griffiths
    • 1
  1. 1.Zoology DepartmentUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations