Marine Biology

, Volume 72, Issue 3, pp 211–218 | Cite as

Ingestion and incorporation of coral-mucus detritus by reef zooplankton

  • M. Gottfried
  • M. R. Roman
Article

Abstract

The copepod Acartia tonsa and the reef mysid Mysidium integrum ingest stained coral mucus. Ingestion rates determined with radioisotope-labeled mucus ranged from 4 to 81% body carbon · 24 h-1 for the copepods and I to 70% body carbon · 24 h-1 for the mysids. Incorporation was measured by comparing the organic composition of fecal material and by the incorporation of isotope-labeled mucus. A. tonsa incorporated 47% of ingested ash-free material, 68% of carbon and 36% of nitrogen. M. integrum incorporated 44% of ingested ash-free matter, 57% of carbon and 55% of nitrogen. Incorporation estimates using 14C-labeled mucus were 65% and 39% for incorporation by A. tonsa and M. integrum respectively. A. tonsa and M. integrum incorporated both the mucus substrate and the epiphytic bacteria of the mucus-detritus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, J. A. and J. H. Steele: Shipboard experiments on the feeding of Calanus finmarchicus (Gunnerus). In: Some contemporary studies in marine science, pp 19–35. Ed. by H. Barnes. New York: Hafner Publ. Co. 1966Google Scholar
  2. Alldredge, A.: The chemical composition of macroscopic aggregates in two neritic seas. Limnol. Oceanogr. 24, 855–866 (1979)Google Scholar
  3. Alldredge, A., and J. M. King: Distribution, abundance and substrate preferences of demersal reef zooplankton at Lizard Island Lagoon, Great Barrier Reef. Mar. Biol. 41, 317–333 (1977)Google Scholar
  4. Baker, J. H. and L. A. Bradnam The role of bacteria in the nutrition of aquatic detritivores. Oecologia 24, 95–104 (1976)Google Scholar
  5. Beers, J. R.: Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda. Limnol. Oceanogr. 11, 520–528 (1966)Google Scholar
  6. Benson, A. and L. Muscatine: Wax in coral mucus: energy transfer from corals to reef fish. Limnol. Oceanogr. 19, 810–814 (1974)Google Scholar
  7. Brown, J. W., G. R. Harvey and P. Betzer: Particulate lipid flux in tropical east Pacific Ocean. (In preparation)Google Scholar
  8. Caperon, J., W. Harvey and F. Steinhilper: Particulate organic carbon, nitrogen and chlorophyll as measures of phytoplankton and detritus standing crops in Kaneohe Bay, Oahu, Hawaiian Is. Pac. Sci. 30, 317–327 (1976)Google Scholar
  9. Chervin, M. B.: Assimilation of particulate organic carbon by estuarine and coastal copepods. Mar. Biol. 49, 265–275 (1978)Google Scholar
  10. Clutter, R. and G. Theilacker. Ecological efficiency of a pelagic mysid shrimp: estimates from growth, energy budget and mortality studies. Fish. Bull, U.S. 69, 93–115 (1969)Google Scholar
  11. Coles, S. L. and R. Strathmann. Observations on coral mucus ‘flocs’ and their potential trophic significance. Limnol. Oceanogr. 18, 673–678 (1973)Google Scholar
  12. Conover, R.: Assimilation of organic matter by zooplankton. Limnol. Oceanogr. 11, 338–345 (1966)Google Scholar
  13. Conover, R. and V. Francis: The use of radioactive isotopes to measure the transfer of materials in aquatic food chains. Mar. Biol. 18, 272–283 (1973)Google Scholar
  14. Conover, R. and M. E. Huntley: General rules of grazing in pelagic ecosystems. In: Primary productivity in the sea, pp 461–486. Ed. by P. G. Falkowski. New York, Plenum Press 1980Google Scholar
  15. Cosper, T. C. and M. R. Reeve: Digestive efficiency of the chaetognath Sagitta hispida Conant. J. exp mar. Biol. Ecol. 17, 33–38 (1975)Google Scholar
  16. Crossland, C. J., D. J. Barnes, T. Cox and M. Devereux: Compartmentation and turnover of organic carbon in the staghorn coral Acropora formosa. Mar. Biol. 59, 181–187 (1980 a)Google Scholar
  17. Crossland, C. J., D. J. Barnes and M. A. Borowitzka: Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar. Biol. 60, 81–90 (1980 b)Google Scholar
  18. Dagg, M. and D. W. Grill: Natural feeding rates of Centropages typicus females in the New York bight. Limnol. Oceanogr. 25, 597–609 (1980)Google Scholar
  19. Daumas, R. and B. A. Thomassin: Protein fractions in coral and zoantharian mucus: possible evolution in coral reef environments. Proc. 3rd int Symp. coral reefs, pp 517–523. Ed. by D. L. Taylor. Miami: School of Marine and Atmospheric Sciences, University of Miami 1977Google Scholar
  20. Ducklow, H. and R. Mitchell: Composition of mucus releases by coral reef coelenterates. Limnol. Oceanogr. 24, 706–714 (1979 a)Google Scholar
  21. Ducklow, H. and R. Mitchell. Bacterial populations and adaptations in the mucus layers on living corals. Limnol. Oceanogr. 24, 715–725 (1979 b)Google Scholar
  22. Emery, A. R.: Preliminary observation on coral reef plankton. Limnol. Oceanogr. 13, 293–303 (1968)Google Scholar
  23. Feaguson, R. and P. Rublee. Contribution of bacteria to standing crop of coastal plankton. Limnol. Oceanogr. 21, 141–145 (1976)Google Scholar
  24. Fleming, J. M. and J. Coughlan: Preservation of vitally stained zooplankton for live dead sorting. Estuaries 1, 135–137 (1978)Google Scholar
  25. Foulds, J. B. and K. H. Mann. Cellulose digestion in Mysis stenolepis and its ecological imlications. Limnol. Oceanogr. 23, 760–766 (1978)Google Scholar
  26. Gerber, R. and M. Gerber: Ingestion of natural particulate organic matter and subsequent assimilation, respiration and growth by tropical lagoon zooplankton. Mar. Biol. 52, 33–43 (1979)Google Scholar
  27. Gerber, R. and N., Marshall: Ingestion of detritus by the lagoon pelagic community at Eniwetok Atoll. Limnol. Oceanogr. 19, 815–824 (1974)Google Scholar
  28. Glynn, P.: Ecology of a Caribbean coral reef, the Porites reef flat biotope: Part II, Plankton community with evidence for depletion. Mar. Biol. 22, 1–21 (1973)Google Scholar
  29. Hiatt, R. and D. Strasburg. Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol. Monogr. 30, 65–127 (1960)Google Scholar
  30. Hickel, W.: Seston composition of the bottom waters of Great Lameshur Bay, St. John, U.S.V.I. Mar. Biol. 24, 125–130 (1974)Google Scholar
  31. Hobbie, J. E., R. I. Daley and S. Jasper: Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. environ. Microbiol. 33, 1225–1228 (1977)Google Scholar
  32. Hobson, E.: Feeding relationships of teleostean fishes on coral reefs in Kona Hawaii. Fish. Bull. U.S. 72, 915–1031 (1974)Google Scholar
  33. Hollibaugh, J. T., J. A. Fuhrman and F. Azam. Radioactively labeling of natural assemblages of bacterioplankton for use in trophic studies. Limnol. Oceanogr. 25, 172–181 (1980)Google Scholar
  34. Johannes, R. E.: Ecology of organic aggregates in the vicinity of a coral reef. Limnol. Oceanogr. 12, 189–195 (1967)Google Scholar
  35. Johannes, R. E.: Sources of nutritional energy for reef corals. Proc. 2nd int. symp. coral reefs, pp 133–137. Ed. by Great Barrier Reef Committee Brisbane, Australia 1974Google Scholar
  36. Knudsen, J. W.: Trapezia and Tetralia (Decapods, Brachyura, Xanthidae) as obligate ectoparasites of pocilloporid and acroporid corals. Pac. Sci. 21, 51–57 (1967)Google Scholar
  37. Lampert, W.: A tracer study on the carbon tunover of Daphnia pulex. Verh. internat. Verein. Limnol. 19, 2913–2921 (1975)Google Scholar
  38. Lampert, W.: Studies on the carbon balance of Daphnia pulex as related to environmental conditions I. Methodological problems of the use of 14C for the measurement of carbon assimilation. Arch. Hydrobiol. 48 (supp.), 287–309 (1977)Google Scholar
  39. Landry, M. R.: Predatory feeding behavior of a marine copepod, Labidocera trispinosa. Limnol. Oceanogr. 23, 1103–1113 (1978)Google Scholar
  40. Lasenby, D. and R. Langford: Feeding and assimilation of Mysis relicta. Limnol. Oceanogr. 18, 280–285 (1973)Google Scholar
  41. Lasker, H. R.: Intraspecific variability of zooplankton feeding in the hermatypic coral Montastrea cavernosa. In: Coelenterate ecology and behavior, pp 101–116. Ed. by G. O. Mackie, New York: Plenum Press 1976Google Scholar
  42. Lee, R. F. J. C. Nevenzel and G. A. Pafenhöfer: Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Mar. Biol. 9, 99–108 (1971)Google Scholar
  43. Lewis, J. B.: Experimental tests of suspension feeding in Atlantic reef corals. Mar. Biol. 36, 147–150 (1976)Google Scholar
  44. Lewis, J. B.: Suspension feeding in Atlantic reef corals and the importance of suspended particulate matter as a food source. Proc. 3rd int. Symp. coral reefs, pp 406–408. Ed. by D. L. Taylor Miami: School of Marine and Atmospheric Sciences, University of Miami 1977Google Scholar
  45. Marshall, N.: Observations on organic aggregates in the vicinity of coral reefs. Mar. Biol. 2, 50–53 (1968)Google Scholar
  46. Marshall, N.: Notes on mucus and zooxanthellae discharged from reef corals. Proc. symp. corals and coral reefs, pp 59–65. Ed. by C. Mukundan and C. S. Gopinadha-Pillai. Mar. Biol Assoc. India, Cochin 1972Google Scholar
  47. Marshall, N., A. G. Durbin, R. Gerber, and G. Telek: Observations on particulate and dissolved organic matter in coral reef areas. Int. Revue ges. Hydrobiol. 60, 335–345 (1975)Google Scholar
  48. Oláh, J.: Leaching, colonization and stabilization during detritus formation. Mem. Ist. Ital. Idrobiol. Dott Marco de Marchi Pallanza Italy 29 (supp.), 105–128 (1972)Google Scholar
  49. Patton, J., S. Abraham and A. A. Benson: Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: evidence for a light driven carbon cycle between symbiont and host. Mar. Biol. 44, 235–247 (1977)Google Scholar
  50. Qasim, S. Z. and V. N. Sankaranarayanan: Production of particulate matter by the reef on Kavaratti Atoll. Limnol. Oceanogr. 15, 574–578 (1970)Google Scholar
  51. Richman, S., Y. Loya and L. B. Slobodkin: The rate of mucus production by corals and its assimilation by the coral reef cepepod Acartia negligens. Limnol. Oceanogr. 20, 918–923 (1975)Google Scholar
  52. Roman, M. R.: Feeding of the copepod Acartia tonsa on the diatom Nitzschia closterium and brown algae (Fucus vesiculosis) detritus. Mar. Biol. 42, 149–155 (1977)Google Scholar
  53. Rublee, P. A.: Bacteria in a North Carolina salt marsh: standing crop and importance in the decomposition of Spartina alterniflora, 80 pp. Ph.D. thesis, North Carolina State University 1978Google Scholar
  54. Rublee, P. A., H. Lasker, M. Gottfried and M. R. Roman: Production and bacterial colonization of mucus from the soft coral Briarium asbestinum. Bull. mar. Sci., 30, 888–893 (1980)Google Scholar
  55. Russell, M. A. C.: The ingestion and assimilation of coral mucus particles by gorgonian soft corals, 45 pp. M.S. thesis, University of Miami 1981Google Scholar
  56. Scott, B. D. and H. R. Jitts: Photosynthesis of phytoplankton and zooxanthellae on a coral reef. Mar. Biol. 41, 307–315 (1977)Google Scholar
  57. Shanks, A. and J. Trent: Marine snow: microscale nutrient patches. Limnol. Oceanogr. 24, 850–854 (1979)Google Scholar
  58. Silver, M. W., A. Shanks and J. Trent: Marine snow: microplankton habitat and source of small scale patchiness in pelagic populations. Science, N.Y. 201, 371–373 (1978)Google Scholar
  59. Simmons, G.: Abundance and size distribution of particulate matter fractions near a Caribbean bank barrier reef. Mar. Ecol. Prog. Ser. 1, 7–11 (1979)Google Scholar
  60. Steedman, H. F.: Alcian blue 8GS: a new stain for mucin. Q. J. Microsc. Sci. 91, 477–479 (1950)Google Scholar
  61. Tenore, T.: Utilization of aged detritus derived from different sources by the polychaete Capitella capitata. Mar. Biol. 44, 51–55 (1977)Google Scholar
  62. Trent, J. D., A. L., Shanks and M. Silver: In situ and laboratory measurements on macroscopic aggregates in Monterey Bay, California. Limnol. Oceanogr. 23, 626–635 (1978)Google Scholar
  63. Westrum, B. and P. Meyers. Organic carbon content of seawater from over three Caribbean reefs. Bull. mar. Sci. 28, 153–158, (1978)Google Scholar
  64. Yentsch, C. and D. W. Menzel: A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res 10, 221–231 (1963)Google Scholar
  65. Yingst, J. Y.: The utilization of organic matter in shallow marine sediments by an epibenthic deposit feeding holothurian. J. exp. mar. Biol. Ecol. 23, 55–69 (1976)Google Scholar
  66. Youngbluth, M. J.: Daily, seasonal and annual fluctuations among zooplankton populations in an unpolluted, tropical embayment. Est. coast. mar. Sci. 10, 265–287 (1980)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • M. Gottfried
    • 1
  • M. R. Roman
    • 1
  1. 1.Rosenstiel School of Marine and Atmospheric ScienceMiamiUSA
  2. 2.Chesapeake Biological LaboratoryUniversity of MarylandSolomonsUSA

Personalised recommendations