Skip to main content

Finite rise time step strain modeling of nearly monodisperse polymer melts and solutions

Abstract

The step shear strain experiment is one of the fundamental transient tests used to characterize the rheology of viscoelastic polymer melts and solutions. Many melts and solutions exhibit homogeneous deformation and stress relaxation; in these cases the transient dynamics can be modeled by completely ignoring momentum effects and imposing singular kinematics. Recently, however, it has been observed that there are certain classes of nearly monodisperse melts and solutions that exhibit anomalous nonhomogeneous deformation and stress relaxation (Morrison and Larson (1990), Larson, Khan, and Raju (1988), Vrentas and Graessley (1982), and Osaki and Kurata (1980)). We demonstrate that, for these classes, a finite rise time must be incorporated, some source of inhomogeneity must be present, and a small amount of added Newtonian viscosity is necessary. We examine five nonlinear and quasilinear models; the Johnson-Segalman, Phan Thien Tanner, Giesekus, White-Metzner, and Larson models. We determine which mathematical features of the models are necessary and/or sufficient to describe the observed experimental behavior.

This is a preview of subscription content, access via your institution.

References

  1. Lodge AS, Meissner J (1972) Rheol Acta 11:351

    Google Scholar 

  2. Lodge AS (1984) J Non-Newtonian Fluid Mech 14:67

    Google Scholar 

  3. Khan SA, Larson RG (1987) J Rheol 31:207

    Google Scholar 

  4. Fukuda M, Osaki K, Kurata M (1975) J Polymer Sci, Polymer Phys Ed 13:1563

    Google Scholar 

  5. Osaki K, Kurata M (1980) Macromolecules 13:671

    Google Scholar 

  6. Vrentas CM, Graessley WW (1982) J Rheol 26:359

    Google Scholar 

  7. Larson RG, Khan SA, Raju VR (1988) J Rheol 32:145

    Google Scholar 

  8. Morrison FA, Larson RG (1990) The Effect of Polydispersity on Deformational Phase Separation in Concentrated Polystyrene Solutions. Annual AICheE Mtg, Chicaco, IL (to appear)

  9. Venerus DC, Vrentas CM, Vrentas JS (1990) J Rheol 34:657

    Google Scholar 

  10. Marrucci G, Grizzuti N (1983) J Rheol 27:433

    Google Scholar 

  11. Vinogradov GV, Malkin A Ya, Yanovskii Yu G, Borisenkova EK, Yarlykov BV, Berezhnaya GV (1972) J Polym Sci A-Z 10:1061

    Google Scholar 

  12. Kolkka RW, Malkus DS, Hansen MG, Ierley GR, Worthing RA (1988) J Non-Newtonian Fluid Mech 29:303

    Google Scholar 

  13. Malkus DS, Nohel JA, Plohr BJ (1990) J Comp Phys 87:464

    Google Scholar 

  14. Kolkka RW, Ierley GR (1989) J Non-Newtonian Fluid Mech 33:305

    Google Scholar 

  15. Larson RG (1988) Constitutive Equations for Polymer Melts and Solutions. Butterworth Publishers, Stoneham, MA

    Google Scholar 

  16. Narain A, Joseph DD (1982) Rheol Acta 21:228

    Google Scholar 

  17. Malkus DS, Tsai YC, Kolkka RW (1991) In: Chung T (ed) Finite Elements in Fluids. Hemisphere Publ, NY

    Google Scholar 

  18. Ide Y, White JL (1977) J Non-Newtonian Fluid Mech 2:281

    Google Scholar 

  19. Kolkka RW, Malkus DS, Nohel JA (1990) Singularly Perturbed Non-Newtonian Shear Flows. Technical Summary Report # 90-10, Center for Math Sci, Univ of Wise-Madison

  20. Wagner MH (1972) J Non-Newtonian Fluid Mech 4:39

    Google Scholar 

  21. Joseph DD (1990) Fluid Dynamics of Viscoelastic Liquids. Springer, New York

    Google Scholar 

  22. Malkus DS, Nohel JA, Blohr BJ (1991) SIAM J Appl Math (to appear)

  23. Cook RD, Malkus DS, Plesha ME (1989) Concepts and Applications of the Finite Element Method. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kolkka, R.W., Malkus, D.S. & Rose, T.R. Finite rise time step strain modeling of nearly monodisperse polymer melts and solutions. Rheola Acta 30, 430–446 (1991). https://doi.org/10.1007/BF00396529

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396529

Key words

  • Step shear
  • monodisperse polymers
  • Stress relaxation