Skip to main content
Log in

The evolution of linear viscoelasticity during the vulcanization of polyethylene

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The evolution of linear viscoelasticity during the vulcanization of polyethylene is studied through the gel point. The material in the vicinity of the gel point is described by two scaling laws: one characterizes the viscoelasticity at the critical point and a second characterizes the evolution of viscoelasticity near the gel point. Time Resolved Mechanical Spectroscopy is used to observe both scaling phenomena. The material at the gel point displays power law relaxation over five decades of time with a power-law relaxation exponent equal to 0.32. This study conforms with previous findings that this exponent is composition-dependent. The longest relaxation time diverges in the vicinity of the gel point as λmax ∼ |p c - p| −1/κ, and we find κ = 0.2. This result conforms with previous reports that this exponent may be independent of composition. The Arrhenius flow activation energy for this material undergoes three-fold changes during crosslinking up to the gel point. A single-adjustable-parameter stretched-exponential-power law relaxation function is an inadequate representation of crosslinked materials over any significant range of extent of the reaction up to the gel point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stauffer D (1985) Introduction to Percolation Theory. Taylor and Francis, London

    Google Scholar 

  2. Stauffer D, Coniglio A, Adam M (1982) Adv Polym Sci 44:103

    Google Scholar 

  3. Chambon F, Winter HH (1985) Polym Bull 13:499

    Google Scholar 

  4. Winter HH, Chambon F (1986) J Rheol 30:367

    Google Scholar 

  5. Chambon F, Winter HH (1987) J Rheol 31:683

    Google Scholar 

  6. Scanlan JC, Winter HH (1991) Macromolecules 24:47

    Google Scholar 

  7. Martin JE, Adolf D, Wilcoxon JP (1988) Phys Rev Lett 61:2620

    Google Scholar 

  8. Durand D, Delsanti M, Adam M, Luck JM (1987) Europhys Lett 3:97

    Google Scholar 

  9. Scanlan JC, Winter HH (1991) Makromolekulare Chemie (in press)

  10. Adolf D, Martin JE, Wilcoxon JP (1990) Macromolecules 23:527

    Google Scholar 

  11. Rubinstein M, Colby RH, Gillmor JR (1989) Polym Prepr (Am Chem Soc, Div Poly Sci) 30:81

    Google Scholar 

  12. Muthukumar M (1985) J Chem Phys 83:3161

    Google Scholar 

  13. Hess W, Vilgis TA, Winter HH (1988) Macromolecules 21:2536

    Google Scholar 

  14. Lazar M, Rado R, Rychly J (1990) Adv Polym Sci 95:149

    Google Scholar 

  15. Grest GS, Kremer K (1990) Macromolecules 23:4994

    Google Scholar 

  16. Sanlan JC, Winter HH (1991) to be submitted

  17. Ferry JD (1980) Viscoelastic Properties of Polymers. Wiley, New York

    Google Scholar 

  18. Hodgson DF, Amis EJ (1990) Macromolecules 23:2512

    Google Scholar 

  19. Allain C (1990) Macromolecules 23:982

    Google Scholar 

  20. Winter HH (1987) Prog Coll Polym Sci 75:104

    Google Scholar 

  21. Schosseler F, Benoit H, Gallot Z, Strazielle CL, Leibler L (1989) Macromolecules 22:400

    Google Scholar 

  22. Patton EV, Wesson JA, Rubenstein M, Wilson JC, Oppenheimer LE (1989) Macromolecules 22:1946

    Google Scholar 

  23. Tschoegl NW (1989) The Phenomenological Theory of Linear Viscoelastic Behavior. Springer, Berlin

    Google Scholar 

  24. Scanlan JC, Janzen J: under review

  25. Raju VR, Rachapudy H, Graessley WW (1979) J Polym Sci Polym Phys 17:1183

    Google Scholar 

  26. Raju VR, Smith GG, Marin G, Knox JR, Graessley WW (1979) J Polym Sci Polym Phys 17:1183

    Google Scholar 

  27. Ngai KL, Plazek DJ (1985) J Polym Sci Polym Phys Ed 23:2159

    Google Scholar 

  28. Shirayama K, Matsuda T, Kita SI (1971) Makromolekulare Chemie 147:155

    Google Scholar 

  29. Hughes JK (1983) Soc Plast Eng Tech Conf, May 3–5

  30. Whitte WM, Randall JC, Leigh CH (1983) Chem Eng Comm 24:139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scanlan, J.C., Hicks, M.J. The evolution of linear viscoelasticity during the vulcanization of polyethylene. Rheola Acta 30, 412–418 (1991). https://doi.org/10.1007/BF00396527

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396527

Key words

Navigation