Skip to main content
Log in

Immunocytochemical localization of cytokinins in Craigella tomato and a sideshootless mutant

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Post-embedding immunocytochemical techniques using peroxidase-antiperoxidase or immunoglobulin G-gold as markers were used for the localization of cytokinins (CKs) in two isogenic lines, Craigella (C) and Craigella lateral suppressor (Cls), of tomato Lycopersicon esculentum Mill. Terminal buds, nodes, hypocotyl segments and root tips were submitted to a periodate-borohydride procedure, to obtain the coupling of isopentenyladeosine and zeatin riboside to cellular proteins, followed by a fixative step with a paraformaldehyde and glutaraldehyde mixture. Enzyme-linked immunosorbent assay tests performed on ovalbumin-coated microtitration plates have shown that this method was effective for CK riboside and base coupling to proteins. Paraffin-wax- or Spurr's-resin-embedded sections were cleared of wax or resin before incubation with anti-zeatin riboside or anti-isopentenyladenosine antibodies. The procedure was thoroughly investigated and many controls were done in order to eliminate artefacts. The immunostaining patterns observed along the plants showed a basipetally decreasing gradient of CKs along the stem and in the roots. Immunolabelling was higher in the actively growing regions of the stem bud and root apices. Terminal buds of Cls appeared to be less immunoreactive than C, whereas no differences were detected in root-tip immunolabelling. The staining patterns are consistent with the idea that root and bud apices have a different CK metabolism. The absence of axillary bud formation in Cls is correlated with low CK levels in the organogensis sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C:

Craigella, isogenic line

CK:

cytokinin

Cls:

Craigella lateral suppressor

EDC:

1-(3-dimethylaminopropyl)3-ethylcarbodiimide hydrochloride

ELISA:

enzyme-linked immunosorbent assay

2iP:

isopentenyladenine

2iPA:

isopentenyladenosine

PAP:

peroxidase-anti-peroxidase

PFAG:

paraformaldehyde/glutaraldehyde mixture

Z:

zeatin

ZR:

zeatin riboside

References

  • Cahill, D.M., Weste, G.M., Grant, B.R. (1986) Changes in cytokinin concentrations in xylem extrudate following infection of Eucalyptus marginata Donn ex Sm with Phytophthora cinnamomi rands. Plant Physiol. 81, 1103–1109

    Google Scholar 

  • Chen, C.-M., Petschow, B. (1978) Cytokinin biosynthesis in cultured rootless tobacco plants. Plant Physiol. 62, 861–865

    Google Scholar 

  • Childs, G.V. (1983) The use of multiple methods to validate immunocytochemical stains. J. Histochem. Cytochem. 31, 168–176

    Google Scholar 

  • Childs, V., Unabia, G., Ellison, D. (1986) Immunocytochemical studies of pituitary hormones with PAP, ABC, and immunogold techniques: Evolution of technology of best fit the antigen. Am. J. Anat. 175, 307–330

    Google Scholar 

  • De Waele, M., De Mey, J., Renmans, W., Labeur, E., Reynaert, Ph., Van Camp, B. (1986) Immunogold-silver staining of lymphocyte surface antigens on cells in suspension and in lymph node cryostat sections. J. Microsc. 143, 151–160

    Google Scholar 

  • Eberle, J., Wang, T.L., Cook, S., Wells, B., Weiler, E.W. (1987) Immunoassay and ultrastructural localization of isopentenyladenine and related cytokinins using monoclonal antibodies. Planta 172, 289–297

    Google Scholar 

  • Erlanger, B.F., Beiser, S.M. (1964) Antibodies specific for ribonucleosides and ribonucleotides and their reaction with DNA. Proc. Natl. Acad. Sci. USA. 52, 68–74

    Google Scholar 

  • Hanker, J.S., Yates, P.E., Metz, C.B., Rustioni, A. (1977) A new specific, sensitive and non carcinogenic reagent for the demonstration of horse-radish peroxidase. Histochem. J. 9, 789–792

    Google Scholar 

  • Holgate, C.S., Jackson, P., Cowen, P.N., Bird, C.C. (1983) Immunogold-silver staining. New method of immunostaining with enhanced sensitivity. J. Histochem. Cytochem. 31, 938–944

    Google Scholar 

  • Koda, Y., Okazawa, Y. (1980) Cytokinin production by Asparagus shoot apex cultured in vitro. Physiol. Plant. 49, 193–197

    Google Scholar 

  • Leroux, B., Maldiney, R., Miginiac, E., Sossountzov, L., Sotta, B. (1985) Comparative quantitation of abscisic acid in plant extracts by gas-liquid chromatography and an enzymelinked immunosorbent assay using the avidin-biotin systems. Planta 166, 524–529

    Google Scholar 

  • Letham, D.S. (1978) Cytokinins. In: Phytohormones and related compounds: a comprehensive treatise, vol. 1, pp. 205–263, Letham, D.S., Goodwin, P.B., Higgins T.V.J., eds. Elsevier/North-Holland Biomedical Press, Amsterdam Oxford New York

    Google Scholar 

  • Maldiney, R., Leroux, B., Sabbagh, I., Sotta, B., Sossountzov, L., Miginiac, E. (1986a) A biotin-avidin-based enzyme immunoassay to quantify three phytohormones: auxin, abscisic acid and zeatin-riboside. J. Immunol. Meth. 90, 151–158

    Google Scholar 

  • Maldiney, R., Pelèse, F., Pilate, G., Sotta, B., Sossountzov, L., Miginiac, E. (1986b) Endogenous levels of abscisic acid, indole-3-acetic acid, zeatin and zeatin-riboside during the course of adventitous root formation in cuttings of Craigella and Craigella lateral suppressor tomatoes. Physiol. Plant. 68, 426–430

    Google Scholar 

  • Mapelli, S., Lombardi, L. (1982) A comparative auxin and cytokinin study in normal and to-2 mutant tomato plants. Plant Cell Physiol. 23, 751–757

    Google Scholar 

  • Mazia, D., Brewer, P.A., Alfert, M. (1953) THe cytochemical staining and measurement of protein with mercuric bromphenol blue. Biol. Bull. 104, 57–67

    Google Scholar 

  • Palmer, M.V., Wong, O.C. (1985) Identification of cytokinins from xylem exudate of Phaseolus vulgaris L. Plant Physiol. 79, 296–298

    Google Scholar 

  • Palmer, M.V., Horgan, R., Wareing, P.F. (1981) Cytokinin metabolism in Phaseolus vulgaris L. Identification of endogenous cytokinins and metabolism of [8-14C]dihydrozeatin in stems of decapitated plants. Planta 153, 297–302

    Google Scholar 

  • Pengelly, W.L., Meins, F., Jr. (1977) A specific radioimmunoassay for nanogram quantities of the auxin, indole-3-acetic acid. Planta 136, 173–180

    Google Scholar 

  • Petrusz, P. (1983) Essential requirements for the validity of immunocytochemical staining procedures. J. Histochem. Cytochem. 31, 177–179

    Google Scholar 

  • Petrusz, P., Ordinneau, P., Finley, J.C.W. (1980) Criteria of reliability for light microscopic immunocytochemical staining. Histochem. J. 12, 333–348

    Google Scholar 

  • Scopsi, L., Larsson, L.I. (1985) Increased sensitivity in immunocytochemistry. Effects of double application of antibodies and of silver intensification on immunogold and peroxidase-antiperoxidase staining techniques. Histochemistry 82, 321–329

    Google Scholar 

  • Skene, D.S., Browning, G., Jones, H.G. (1987) Model systems for the immunolocalization of cis, trans abscisic acid in plant tissues. Planta 172, 192–199

    Google Scholar 

  • Sossountzov, L., Sotta, B., Maldiney, R., Sabbagh, I., Miginiac, E. (1986) Immunoelectron-microscopy localization of abscisic acid with colloidal gold on Lowicryl-embedded tissues of Chenopodium polyspermum L. Planta 168, 471–481

    Google Scholar 

  • Sotta, B., Pilate, G., Pelèse, F., Sabbagh, I., Bonnet, M., Maldiney, R. (1987) An avidin-biotin solid phase ELISA for femtomole isopentenyladenine and isopentenyladenosine measurements in HPLC purified plant extracts. Plant Physiol. 84, 571–573

    Google Scholar 

  • Sotta, B., Sossountzov, L., Maldiney, R., Sabbagh, I., Tachon, P., Miginia, E. (1985) Abscisic acid localization by light microscopic immunohistochemistry in Chenopodium polyspermum L. Effect of water stress. J. Histochem. Cytochem. 33, 201–208

    Google Scholar 

  • Spurr, A.R., (1969) A low viscosity epoxy resin embedding medium for electronmicroscopy. J. Ultrastruct. Res. 26, 31–43

    Google Scholar 

  • Sternberger, L.A., Hardy, P.H., Jr., Cuculis, J.J., Meyer, H.G. (1970) The unlabelled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-anti-horseradish peroxidase) and its use in identification of Spirochetes. J. Histochem. Cytochem. 18, 315–333

    Google Scholar 

  • Swaab, D.F. (1982) Comments on the validity of immunocytochemical methods. In: Cytochemical methods in neuroanatomy, pp. 423–440, Palay, S.L., Chan-Palay, V., eds. A.R. Liss, New York

    Google Scholar 

  • Tucker, D.J. (1976) Endogenous growth regulators in relation to side shoot development in the tomato. New Phytol. 77, 561–568

    Google Scholar 

  • Tucker, D.J. (1977) Hormonal regulation of lateral bud growth in the tomato. Plant. Sci. Lett. 8, 105–111

    Google Scholar 

  • Tucker, D.J. (1979) Apical dominance in the tomato: Some further observations on isogenic lines showing varying degrees of side-shoot development. Ann. Bot. 43, 571–577

    Google Scholar 

  • Tucker, D.J. (1981) Axillary bud formation in two isogenic lines of tomato showing different degrees of apical dominance. Ann Bot. 48, 837–843

    Google Scholar 

  • Van Leeuwen, F. (1986) Pitfalls in immunocytochemistry with special reference to the specificity problems in the localization of neuropeptides. Am. J. Anat. 175, 363–377

    Google Scholar 

  • Weiler, E.W. (1980) Radioimmunoassays for trans-zeatin and related cytokinins. Planta 149, 155–162

    Google Scholar 

  • Weiler, E.W. (1984) Immunoassay of plant regulators. Annu. Rev. Plant Physiol. 35, 85–95

    Google Scholar 

  • Weiler, E.W., Ziegler, H. (1981) Determination of phytohormones in phloem exudate from tree species by radioimmunoassay. Planta 152, 168–170

    Google Scholar 

  • Yensen, J. (1968) Removal of epoxy resin from histological sections following halogenation. Stain Technol. 43, 344–346

    Google Scholar 

  • Zavala, M.E., Brandon, D.L. (1983) Localization of a phytohormone using immunocytochemistry. J. Cell Biol. 97, 1235–1239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sossountzov, L., Maddiney, R., Sotta, B. et al. Immunocytochemical localization of cytokinins in Craigella tomato and a sideshootless mutant. Planta 175, 291–304 (1988). https://doi.org/10.1007/BF00396334

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396334

Key words

Navigation