Skip to main content
Log in

Enzymbildung in Roggenkeimlingen Während der Umstellung von Heterotrophem auf Autotrophes Wachstum

Enzyme formation in rye seedlings during the change from heterotrophic to autotrophic growth

  • Published:
Planta Aims and scope Submit manuscript

Summary

  1. 1.

    The formation of enzymes of the oxidative and reductive pentose phosphate cycle was followed in developing rye seedlings. Ribulose diphosphate carboxylase and transketolase are absent in dry seeds; ribose phosphate isomerase is found only in trace amounts. In light as well as in the dark transketolase and ribose phosphate isomerase increase immediately after the onset of germination, whereas ribulose diphosphate carboxylase appears later. Remarkably the latter enzyme is also formed in completely dark-grown seedlings. At this stage isolated thylakoids are already present in the proplastids. The formation of these enzymes of the Calvincycle is promoted by light.

  2. 2.

    The formation of ribulose diphosphate carboxylase and transketolase is strongly suppressed by low temperature or chloramphenicol. Chloramphenicol also inhibits the growth of proplastids and prevents the formation of thylakoids but not of prolamellar bodies.

  3. 3.

    Glucose-6-phosphate dehydrogenase, phosphogluconate dehydrogenase, and shikimate dehydrogenase are already present in the dry embryo. At the beginning of seedling development there is a rapid increase in glucose-6-phosphate dehydrogenase. In the shoots the rate of this increase levels off at the moment when ribulose diphosphate carboxylase appears. This decrease in the rate of formation of glucose-6-phosphate dehydrogenase is not due to a lack of nutrients, but must be caused by a specific regulation.

  4. 4.

    When the formation of ribulose diphosphate carboxylase is prevented by low temperature or chloramphenicol, the increase of glucose-6-phosphate dehydrogenase continues at a constant rate. It is concluded that the formation of glucose-6-phosphate dehydrogenase is suppressed by factors which appear when enzymes of the Calvin-cycle are formed. This effect of low temperature is not directly connected with vernalisation phenomena.

  5. 5.

    The results suggest that the oxidative pentose phosphate cycle plays a special role in heterotrophic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Anderson, D. G., H. A. Stafford, E. E. Conn, and B. Vennesland The distribution in higher plants of triphosphopyridine nucleotide-linked enzyme systems capable of reducing glutathione. Plant Physiol. 27, 675–684 (1952).

    Google Scholar 

  • Axelrod, B., and R. S. Bandurski: Oxidative metabolism of hexose phosphates by higher plants. Fed. Proc. 11, 182 (1952).

    Google Scholar 

  • Barnett, R. C., H. A. Stafford, E. E. Conn, and B. Vennesland: Phosphogluconic dehydrogenase in higher plants. Plant Physiol. 28, 115–122 (1953).

    Google Scholar 

  • Bartels, H.: Enzymaktivitäten in ruhenden und keimenden Samen von Pinus nigra Arn. Planta (Berl.) 55, 573–597 (1960).

    Google Scholar 

  • Beevers, L., and R. H. Hageman: The mechanism of induction of nitrate reductase in higher plants. Plant Physiol. 38, Suppl. XXXII (1963).

    Google Scholar 

  • Böger, P.: Das Strukturproteid aus Chloroplasten einzelliger Grünalgen und seine Beziehung zum Chlorophyll. Flora (Jena) 154, 174–211 (1964).

    Google Scholar 

  • Chakravorty, M., and D. P. Burma: Enzymes of the pentose phosphate pathway in the mung-bean seedling. Biochem. J. 73, 48–53 (1959).

    Google Scholar 

  • Döbel, P.: Untersuchung der Wirkung von Streptomycin-, Chloramphenicol- und 2-Thiouracil-Behandlung auf die Plastidenentwicklung von Lycopersicum esculentum Miller. Biol. Zbl. 82, 275–295 (1963).

    Google Scholar 

  • Eisenstadt, J. M., and G. Brawerman: The protein-synthesizing systems from the cytoplasm and chloroplasts of Euglena gracilis. J. molec. Biol. 10, 392–402 (1964).

    Google Scholar 

  • Feierabend, J.: Differenzierungsmuster und Regulationsvorgänge im Enzymsystem von Roggenkeimlingen. Diss. Göttinge 1965.

  • — u. A. Pirson: Die Wirkung des Lichts auf die Bildung von Photosyntheseenzymen in Roggenkeimlingen. Z. Pflanzenphysiol. 55, 235–245 (1966).

    Google Scholar 

  • Gibbs, M.: Triosephosphate dehydrogenase and glucose-6-phosphate dehydrogenase in the pea plant. Nature (Lond.) 170, 164 (1952).

    Google Scholar 

  • Gibor, A. and S. Granick: Plastids and mitochondria: inheritable systems. Science 145, 890–897 (1964).

    Google Scholar 

  • Goksöyr, J., E. Boeri, and R. K. Bonnichsen: The variation of ADH and catalase activity during the germination of the green pea (Pisum sativum). Acta chem. scand. 7, 657–662 (1953).

    Google Scholar 

  • Hageman, R. H., and D. I. Arnon: Changes in glyceraldehydephosphate dehydrogenase during the life cycle of green plant. Arch. Biochem. Biophys. 57, 421–436 (1955).

    Google Scholar 

  • —, and D. Flesher: Nitrate reductase activity in corn seedlings as affected by light and nitrate content of nutrient media. Plant Physiol. 35, 700–708 (1960).

    Google Scholar 

  • ——, and D. Flesher: The effect of an anaerobic environment on the activity of alcohol dehydrogenase and other enzymes of corn seedlings. Arch. Biochem. Biophys. 87, 203–209 (1960).

    Google Scholar 

  • Hall, D. O., R. C. Huffaker, L. N. Shannon, and A. Wallace: Influence of light on dark carboxylation reactions in etiolated barley leaves. Biochim. biophys. Acta (Amst.) 35, 540–542 (1959).

    Google Scholar 

  • Haskins, F. A.: Changes in the activities of several enzymes during germination and seedlings development in corn (Zea mays L.). Plant Physiol. 30, 74–78 (1955).

    Google Scholar 

  • Heber, U., N. G. Pon, and M. Heber: Localization of carboxydismutase and triosephosphate dehydrogenases in chloroplasts. Plant Physiol. 38, 355–360 (1963).

    Google Scholar 

  • —, u. K. A. Santarius: Pyridinnucleotide in Chloroplasten und Zytoplasma von Blattzellen im Licht und im Dunkeln. In: Currents in photosynthesis. Proc. 2. West.-Europe Conf. Photos., ed. by J. B. Thomas and J. C. Goedheer, p. 393–400. Rotterdam: Donker-Publ. 1966.

    Google Scholar 

  • Hotta, Y., and H. Stern: Transient phosphorylation of deoxyribosides and regulation of deoxyribonucleic acid synthesis. J. biophys. biochem. Cytol. 11, 311–319 (1961).

    Google Scholar 

  • Hudock, G. A., G. C. McLeod, J. Moravkova-Kiely, and R. P. Levine: The relation of oxygen evolution to chlorophyll and protein synthesis in a mutant strain of Chlamydomonas reinhardi. Plant Physiol. 39, 898–903 (1964).

    Google Scholar 

  • Huffaker, R. C., R. B. Obendorf, C. J. Keller, and G. E. Kleinkoff: In vivo light stimulation of carboxylative phase enzyme activities in greening barley seedlings. Plant Physiol. 39, Suppl. XIV (1964).

    Google Scholar 

  • Huth, W.: Enzymatische Untersuchungen an Grünalgen bei verschiedenen Formen der Kohlenstoffernährung. Diss. Göttingen 1965.

  • Klein, S.: The effect of low temperature on the development of the lamellar system in chloroplasts. J. biophys. biochem. Cytol. 8, 529–539 (1960).

    Google Scholar 

  • Kotzé, J. P. u. E. Latzko: Aktivitätswechsel von Enzymen der Glykolyse sowie des Citrat- und Pentosephosphatcyklus in keimender Sommergerste. Z. Pflanzenphysiol. 53, 320–333 (1965).

    Google Scholar 

  • Marcus, A.: Photocontrol of formation of red kidney bean leaf triphosphopyridine nucleotide linked triosephosphate dehydrogenase. Plant Physiol. 35, 126–128 (1960).

    Google Scholar 

  • Margulies, M. M.: Effect of chloramphenicol on light-dependent synthesis of proteins and enzymes of leaves and chloroplasts of Phaseolus vulgaris var. Black Valentine. Plant Physiol. 39, 579–585 (1964).

    Google Scholar 

  • —: Relationship between red light mediated glyceraldehyde-3-phosphate dehydrogenase formation and light dependent development of photosynthesis. Plant Physiol. 40, 57–61 (1965).

    Google Scholar 

  • Marschner, H., u. I. Günther: Veränderungen der Feinstruktur der Chloroplasten in Gerstensprossen unter dem Einfluß von Cäsium. Flora (Jena) A 156, 684–696 (1966).

    Google Scholar 

  • Molotskovsky, J. G., and V. F. Moriakova: The role of nucleic acids and protein in induced chlorophyll biosynthesis. Izv. Akad. Nauk S.S.R., Ser. Biol. 28, 719–723 (1963). Nach Ber. wiss. Biol. 213, 106 (1964).

    Google Scholar 

  • Oota, Y., Y. Yamamoto, and R. Fujii: Dehydrogenase pattern in bean seed embryo. J. Biochem. 40, 187–203 (1953).

    Google Scholar 

  • Paigen, K.: Changes in the inducibility of galactokinase and β-galactosidase during inhibition of growth in Escherichia coli. Biochim. biophys. Acta (Amst.) 77, 318–328 (1963).

    Google Scholar 

  • Paleg, L. G.: Physiological effects of gibberellic acid. II. On starch hydrolyzing enzymes of barley endosperm. Plant Physiol. 35, 902–906 (1960).

    Google Scholar 

  • —: Physiological effects of gibberellins. Ann. Rev. Plant Physiol. 16, 291–322 (1965).

    Google Scholar 

  • Parthier, B.: Chloramphenicol-Wirkung auf eine durch Licht stimulierte Proteinsynthese in Blättern und in isolierten Chloroplasten. Z. Naturforsch. 20b, 1191–1197 (1965).

    Google Scholar 

  • Robinson, E., and R. Brown: The development of the enzyme complement in growing root cells. J. exp. Bot. 3, 356–374 (1952).

    Google Scholar 

  • Rossner, W.: Licht- und elektronenoptische Untersuchungen über den Einfluß von Streptomycin auf Sinapis alba L. Protoplasma (Wien) 52, 580–610 (1960).

    Google Scholar 

  • Sen, N. P., and A. D. Robinson: The absence of thiamine phosphates from cereals. Canad. J. Biochem. Physiol. 41, 97–100 (1963).

    Google Scholar 

  • Smillie, R. M., W. R. Evans, and H. Lyman: Metabolic events during the formation of a photosynthetic from a nonphotosynthetic cell. Meristems and differentiation. Brookhaven Symposia Biol. 16, 89–108 (1963).

    Google Scholar 

  • Stubbe, W.: Die Plastiden als Erbträger. 3. Wiss. Konf. Ges. Dtsch. Naturf. u. Ärzte. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  • Sypherd, P. S., N. Strauss, and H. P. Treffers: The preferential inhibition by chloramphenicol of induced enzyme synthesis. Biochem. biophys. Res. Commun. 7, 477–481 (1962).

    Google Scholar 

  • Tolbert, N. E., and F. B. Gailey: Carbon dioxide fixation by etiolated plants after exposure to white light. Plant Physiol. 30, 491–499 (1955).

    Google Scholar 

  • Varner, J. E., and G. R. Chandra: Hormonal control of enzyme synthesis in barley endosperm. Proc. nat. Acad. Sci. (Wash.) 52, 100–106 (1964).

    Google Scholar 

  • Wanka, R., I. K. Vasil, and H. Stern: Thymidine kinase: the dissociability and its bearing on the enzyme activity in plant materials. Biochim. biophys. Acta (Amst.) 85, 50–59 (1964).

    Google Scholar 

  • Wettstein, D. v.: The formation of plastid structures. The photochemical apparatus, its structure and function. Brookhaven Symposia Biol. 11, 138–159 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feierabend, J. Enzymbildung in Roggenkeimlingen Während der Umstellung von Heterotrophem auf Autotrophes Wachstum. Planta 71, 326–355 (1966). https://doi.org/10.1007/BF00396320

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396320

Navigation