Skip to main content
Log in

Powers of ordered sets

Survey Article

  • Published:
Order Aims and scope Submit manuscript

Abstract

Recently there has been significant progress in the study of powers of ordered sets. Much of this work has concerned cancellation laws for powers and uses these two steps. First, logarithmic operators are introduced to transform cancellation problems for powers into questions involving direct product decompositions. Second, refinement theorems for direct product decompositions are brought to bear. Here we present two results with the aim of highlighting these steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.Baclawski and A.Björner (1979) Fixed points in partially ordered sets, Adv. Math. 31, 263–287.

    Google Scholar 

  2. H. Bauer (1981) Garben und Automorphismen geordneter Mengen, PhD Thesis, Darmstadt.

  3. H. Bauer and R. Wille (1983) A proof of Hashimoto's refinement theorem, preprint.

  4. H.Bauer, K.Keimel, and R.Kohler (1981) Verfeinerungs — und Kurzungssatze für Produkte geordneter topologischer Raume und für Funktionen (-Halb-) Verbande, Lecture Notes in Math. 871, 20–44.

    Google Scholar 

  5. C.Bergman, R.McKenzie, and Sz.Nagy (1982) How to cancel a linearly ordered exponent, Colloq. Math. Soc. Janos Bolyai 21, 87–94.

    Google Scholar 

  6. G.Birkhoff (1937a) Extended arithmetic, Duke Math. J. 3, 311–316.

    Google Scholar 

  7. G.Birkhoff (1937b) Rings of sets, Duke Math. J. 3, 443–454.

    Google Scholar 

  8. G.Birkhoff (1940) Lattice Theory, 1st edn., American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  9. G.Birkhoff (1942) Generalized arithmetic, Duke Math. J. 9, 283–302.

    Google Scholar 

  10. G.Birkhoff (1967) Lattice Theory, 3rd edn., American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  11. C. C.Chang, B.Jónsson, and A.Tarski (1964) Refinement properties for relational structures, Fund. Math. 55, 249–281.

    Google Scholar 

  12. B. A.Davey and D.Duffus (1982) Exponentiation and duality, in Ordered Sets (ed. I.Rival), D. Reidel, Dordrecht, pp. 43–95.

    Google Scholar 

  13. B. A.Davey, D.Duffus, R. W.Quakenbush, and I.Rival, Exponents of finite simple lattices (1978) J. London Math. Soc. (2) 17, 203–211.

    Google Scholar 

  14. B. A.Davey and I.Rival (1982) Exponents of lattice-ordered algebras, Alg. Univ. 14, 87–98.

    Google Scholar 

  15. D. Duffus (1984) Automorphisms and products of ordered sets, Alg. Univ. (to appear).

  16. D.Duffus, B.Jónsson, and I.Rival (1978) Structure results for function lattices, Canad. J. Math. 30, 392–400.

    Google Scholar 

  17. D.Duffus and I.Rival (1978) A logarithmic property for exponents of partially ordered sets, Canad. J. Math. 30, 797–807.

    Google Scholar 

  18. D.Duffus and I.Rival (1981) A structure theory for ordered sets, Discrete Math. 35, 53–118.

    Google Scholar 

  19. D.Duffus and R.Wille (1979) A theorem on partially ordered sets of order preserving mappings, Proc. Amer. Math. Soc. 76, 14–16.

    Google Scholar 

  20. D.Duffus and R.Wille (1982) Automorphism groups of function lattices, Colloq. Math. Soc. Janos Bolyai 29, 203–207.

    Google Scholar 

  21. E.Fuchs (1965) Isomorphismus der Kardinalpotenzen, Arch. Math (Brno) 1, 83–93.

    Google Scholar 

  22. J.Hashimoto (1948) On the product decomposition of partially ordered sets, Math. Japon. 1, 120–123.

    Google Scholar 

  23. J.Hashimoto (1951) On direct product decomposition of partially ordered sets, Ann. Math. 54, 315–318.

    Google Scholar 

  24. B.Jónsson (1982a) Arithmetic of ordered sets, in Ordered Sets (ed. I.Rival), D. Reidel, Holland, pp. 3–41.

    Google Scholar 

  25. B.Jónsson (1982b) Powers of partially ordered sets: the automorphism group, Math. Scand. 51 121–141.

    Google Scholar 

  26. B.Jónsson and R.McKenzie (1982) Powers of partially ordered sets: cancellation and refinement properties, Math. Scand. 51, 87–120.

    Google Scholar 

  27. L.Lovász (1967) Operations with structures, Acta Math. Acad. Sci. Hungar. 18, 321–328.

    Google Scholar 

  28. R.McKenzie (1971) Cardinal multiplication of structures with a reflexive relation, Fund. Math. 70, 59–101.

    Google Scholar 

  29. R.McKenzie and R.Quackenbush (1981) The spectrum of a lattice-primal algebra, Discrete Math. 35, 157–164.

    Google Scholar 

  30. M. Novotny (1960) Uber gewisse Eigenschaften von Kardinaloperationen, Spisy Prirod Fac. Univ. Brno, pp. 465–484.

  31. H. A.Priestley (1970) Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2, 186–190.

    Google Scholar 

  32. H. A.Priestley (1972) Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. (3) 24, 507–530.

    Google Scholar 

  33. R.Quackenbush (1982) Enumeration in classes of ordered structures, in Ordered Sets (ed. I.Rival), D. Reidel, Dordrecht, pp. 523–554.

    Google Scholar 

  34. I.Rival (ed.) (1982) Ordered Sets, D. Reidel, Dordrecht.

    Google Scholar 

  35. G.Sabidussi (1960) Graph multiplication, Math. Z. 72, 446–457.

    Google Scholar 

  36. R.Wille (1980) Cancellation and refinement results for function lattices, Houston J. Math. 6, 431–437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Jōnsson

Supported by NSF grant MCS 83-02054

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duffus, D. Powers of ordered sets. Order 1, 83–92 (1984). https://doi.org/10.1007/BF00396275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396275

AMS (MOS) subject classification (1980)

Key words

Navigation