Skip to main content
Log in

Non-linearity in rheology —an essay of classification

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Different non-linear phenomena (such as non-Newtonian flow, large elastic deformations, instabilities of different types and many others) are the heart of rheology. Therefore many attempts were carried out to find quantitative, or at least qualitative, models of non-linear behavior. The general or perhaps most attractive way of developing rheological constitutive equations consists in the search for the most general method to describe everything in the framework of a single approach. Naturally, this leads to very complicated and ambiguous equations. Meanwhile, it is reasonable to try another way based on separating observed phenomena into different types depending on observed phenomena into different types depending on their physical origin. An attempt to propose such their physical origin. An attempt to propose such classification of nonlinear rheological effects is made.

According to the assumed scheme three levels of non-linearity are distinguished. There is a group of phenomena which originate as a consequence of finite elastic deformations. This is weak non-linearity related to equilibrium properties of a matter. The second level can be characterized as strong non-linearity. It is related to reversible structure changes, developing in time and connected with changes in relaxation properties of a matter. This group of effects can be treated as kinetic phenomena. Lastly, the third level of non-linearity is connected with breaking or phase transitions induced by deformations. This leads to the most severe consequences and can be treated as effects of thermodynamic nature. It is shown that some well known rheological effects can be explained if we consider them as a superposition of non-linearity of different types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrianova GP, Kechekyan AS, Kargin VA (1971) Self-oscillation mechanism of necking on extension of polymers. J Polymer Sci, part A-2 9:1919–1933

    Google Scholar 

  • Andrianova GP, Nguen Vin-Chii (1972) Reversible changes in mechanical properties of isotactic polypropylene at large deformations and rest. Vysokomol Soedin 14:1545–1551 (in Russian)

    Google Scholar 

  • Barnes HA, Hutton JF, Walters K (1989) An Introduction to Rheology. Elsevier, Amsterdam Oxford NY Tokyo

    Google Scholar 

  • Bingham EC, Green H (1919) Paint, a plastic material and not a viscous liquid. Proc Amer Assoc Testing Materials II 19:640–676

    Google Scholar 

  • Biot M (1939) Theory of elasticity with large displacements and rotations. Proc 5-th Intern Congress Appl Mech

  • Blatz PJ (1969) Application of large deformation theory of the thermomechanical behavior of rubberlike polymers — Porous, unfilled and filled, in: Rheology. Theory and Applications, vol 5. pp 1–55. Ed E. Eirich. Acad Press, NY, Lnd

    Google Scholar 

  • Blatz PJ, Shrada SC, Tschoegl NW (1974) Strain energy function for rubber-like materials based on a generalized measure of strains. Trans Soc Rheol 18:145–161

    Google Scholar 

  • Blinova NK, Sergeenkov SI, Malkin AYa, Yanovskii YuG, Vinogradov GV (1973) Viscoelastic properties and instabilities in flow of solutions of monodisperse polymers. Mekhanika Polymerov (in Russian) No 1:132–137

    Google Scholar 

  • Boltzmann L (1876) Zur Theory der elastischen Nachwirkung. Pogg Ann Phys and Chem 7:624

    Google Scholar 

  • Christensen RE (1962) Extrusion coating of polypropylene. SPE J 18:751–755

    Google Scholar 

  • Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastic processing: theory and applications. Van Nostrand Reinhold, NY

    Google Scholar 

  • Denn GM, Petrie CJS (1976) Instabilities in polymer processing. AIChE J 22:209–231

    Google Scholar 

  • Denny DA, Brodkey RS (1962) Kinetic interpretation of non-Newtonian flow. J Appl Phys 33:2269–2274

    Google Scholar 

  • Driscoll P, Masuda T, Fujiwara K-I (1991) Rheological properties of homogeneous thermotropic liquid crystalline polymers: dynamic viscoelastic and interrupted flow measurements. Macromolecules 24:1567–1574

    Google Scholar 

  • Dupuis D, Wolff C (1993) Shear-thinning behavior of dilute polymer solutions: Kinetic interpretation. J Rheol 37:587–596

    Google Scholar 

  • Finger J (1894) Über die allgemeinsten Beziehungen zwischen Deformationen und den zugehörigen Spannungen in aeolotropen und isotropen Substanzen. Acad Wiss Wien Sitzungsberichte IIa:103

    Google Scholar 

  • Frenkel SYa, Baranov VG, Belnikevich NG, Panov YuN (1964) An orientation mechanism of solid phase formation in polymer solutions subjected to a longitudinal hydrodynamic field. Vysokomol Soedin 6:1917 (in Russian)

    Google Scholar 

  • Freundlich H (1935) Thixotropy. Paris

  • Ginn RF, Denn MM (1969) Rotation stability in viscoelastic liquids. Theory. AIChE J 15:450–454

    Google Scholar 

  • Graessley WW (1984) Viscoelasticity and flow of polymer melts and concentrated solutions. In: Mark JE (ed) Physical properties of polymers. ACS, Washington DC

    Google Scholar 

  • Guth E, James HM, Mark H (1946) The kinetic theory of rubber elasticity. Adv Colloid Sci II:253–298

    Google Scholar 

  • Jobling A, Roberts JE (1959) An interpretation, either the Weissenberg Rheogoniometer, of the stress distribution in flowing polyisobutylene solutions at various concentrations and molecular weights. J Polymer Sci 37:587–596

    Google Scholar 

  • Katchalsky A (1957) Principles of mechanochemistry. Lecture delivered at Moscow University (February 1, 1957)

  • Keller A, Odell JA (1985) The extensibility of macromolecules in solution. A new focus for macromoleculer science. Colloid and Polymer Sci 263:181–201

    Google Scholar 

  • Kelvin Lord (Thomson W) (1975) Elasticity. Encyclopedia Britannica, 9th Ed. Papers 3, London 1990

  • Kim H-G, Mandelkern L (1968) Crystallization kinetics of stretched natural rubber. J Polymer Sci, Ser A-2 6:181–196

    Google Scholar 

  • Kirchhoff G (1852) Ueber die Gleichungen des Gleichgewichts eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Teile. Acad Wiss Wien S Sitzungsberichte, IX

  • Kohlrausch F (1863) Über die elastische Nachwirkung bei der Torsion. Ann Phys Chem 119:337–368

    Google Scholar 

  • Larson RG (1992a) Instabilities in viscoelastic flows. Rheol Acta 31:213–263

    Google Scholar 

  • Larson RG (1992b) Flow induced mixing, demixing, and phase transitions in polymeric fluids. Rheol Acta 31:497–520

    Google Scholar 

  • Linster J-J, Meissner J (1989) Melt extension of a commercial poly(methyl methacrylate) product and a commercial polystyrene. Makromol Chem 190:599–611

    Google Scholar 

  • Lipscomb GG, Denn MM (1984) Flow of Bingham fluids in complex geometries. J Non-Newtonian Fluid Mech 14:337–346

    Google Scholar 

  • Lodge AS (1964) Elastic liquids. Academic Press, Lnd NY

    Google Scholar 

  • Lodge AS (1968) Constitutive equations from molecular network theories for polymer solutions. Rheol Acta 7:379–392

    Google Scholar 

  • Malkin AYa, Leonov AI (1963) About criteria of instability of shear deformations of visco-elastic polymeric systems. Doklady Akademii Nauk SSSR 151:380–383

    Google Scholar 

  • Malkin AYa (1968) Les contraintes normales a les spectres de relaxation dans les systèmes polymères. Rheol Acta 7:335–340

    Google Scholar 

  • Malkin AYa (1970) Changes in relaxation spectra during flow of polymers. In: Vinogradov GV (ed) Adv Polymer Rheology. Khimiya Publ Moscow, pp 171–180 (in Russian)

  • Malkin AYa, Sabsai OYu, Verebskaya EA, Zolotaryev VA, Vinogradov GV (1976) Time effects in transition through yield stress in coagulated disperse structures. Kolloid Zh 38:181–182 (in Russian)

    Google Scholar 

  • Malkin AYa, Kulichikhin SG (1979) Influence of deformations on crystallization of polymer melts and solutions. Kolloid Zh 41:141–145 (in Russian)

    Google Scholar 

  • Malkin AYa, Sabsai OYu, Beghishev VP (1981) Large elastic deformations of polymers in shear and extensional flows. Intern J Polymeric Materials 9:1–8

    Google Scholar 

  • Malkin AYa (1990) Rheology of filled polymers. Adv Polymer Sci 96:70–97

    Google Scholar 

  • Malkin AYa, Teishev AE (1991) Flow curvemolecular weight distribution: is the solution of the inverse problem possible? Polymer Engng Sci 31:1590–1596

    Google Scholar 

  • Maxwell JC (1867) On the dynamical theory of gases. Phyl Mag 35:129–145; 185–217

    Google Scholar 

  • Mooney M (1940) A theory of large elastic deformations. J Appl Phys 11:582–592

    Google Scholar 

  • Mournaghan FD (1952) Finite deformation of an elastic solid. NY

  • Mullins L (1950) Thixotropic behavior of carbon black in rubber. J Phys & Colloid Chem 54:239–251

    Google Scholar 

  • Oldroyd JG (1950) On the formulation of rheological equations of state. Proc Royal Soc A 200:523–541

    Google Scholar 

  • Ostwald WO (1925) Ueber die Gesehwindigkeitsfunktion der Viskosität disperser Systeme. Kolloid-Z 36:99–117

    Google Scholar 

  • Ovehinnikov PF, Mikhailov NV, Rehbinder PA (1968) About equilibrium rupture and thixotropy of a structure during flow of structurized liquids. Doklady Akademii Nauk SSSR 178:1119–1122 (in Russian)

    Google Scholar 

  • Papkov SP, Kulichikhin VG, Kalmykova VD, Malkin AYa (1974) Rheological properties of anisotropic poly(parabenzamide) solutions. J Polymer Sci: Polymer Phys Ed 12:1753–1770

    Google Scholar 

  • Pawlow WP, Winogradow GW Sinizyn WW, Deinega YE (1961) Viscose Eigenschaften von plastisch-disperses Systemen. Rheol Acta 1:470–490

    Google Scholar 

  • Payne AR (1975) In: Technology of reinforcement of elastomers. London, Plastics and Rubber Inst, p F 1

    Google Scholar 

  • Pennings AJ (1967) Hydrodynamically induced crystallization from solution. J Phys Chem Solids 389–393

  • Philippoff W (1942) Viskositat der Kolloide. Leipzig Dresden

  • Philippoff W (1957) On shear stresses, flow curves, flow birefringence and normal stresses of polyisobutadiene solutions. Part I. Fundamental principles. Trans Soc Rheol 1:95–107

    Google Scholar 

  • Philippoff W (1965) Correlation of elastic properties in steady-state flow and vibrational experiments. J Appl Phys 36:3033–3038

    Google Scholar 

  • Piau JM, El Kissi N, Tremblay B (1990) Influence of upstream instabilities and wall slip on melt fracture and sharkskin phenomena during silicones extrusion through orifice dies. J Non-Newtonian Fluid Mech 34:145–180

    Google Scholar 

  • Rehbinder PA, Segalova EE (1950) Investigations of elastic, plastic and viscous properties of structurized disperse systems. Doklady Akademii Nauk SSSR 71:85–88 (in Russian)

    Google Scholar 

  • Reiner M, Schoenfeld-Reiner R (1933) Viscometrische Untersuchungen an Lösungen hochmolecularer Naturstoffe. I. Mitteilung Kautschuk in Toluol. Kolloid-Z 65:44–62

    Google Scholar 

  • Reiner M (1945) A mathematical theory of a dilatancy. Ann J Math 67:350–362

    Google Scholar 

  • Rivlin RS (1948a) Large elastic deformations of isotropic materials. Fundamental concepts. Phil Trans Roy Soc A 240:459–490

    Google Scholar 

  • Rivlin RS (1948b) The hydrodynamics of non-Newtonian fluids. Proc Roy Soc London A 193:260–281

    Google Scholar 

  • Rivlin RS (1984) Forty years of non-linear continuum mechanics. In: Mena B, Garcia-Rejon A, Rangel-Nafaile C (eds) Advances in rheology, vol 1. Univ Nac Autonoma de Mexico (Proceed of IX Intern Congress on Rheology, Acapulco, Mexico, 1984)

  • Röntgen WC (1892) Kurze Mitteilung von Versuchen über den Einfluss des Druckes auf einige physikalische Erscheinungen. Wied Ann (Ann Phys Chem) 45:98–107

    Google Scholar 

  • Saint-Venant AJB de (1847) Mémoire sur l'equilibre des corps solides, dans les limites de leur élasticité, et sur les conditions de l'eur resistance, quand les déplacements éprouvés par leurs points ne sont pas trés petits. CR Acad Sci Paris 24

  • Schroff RN (1970) Shear-dependent relaxation spectrum: conversion from steadyflow viscosities to relaxation spectrum for polymer melts. J Appl Phys 41:3652–3655

    Google Scholar 

  • Silberberg A, Eliassef J, Katchalsky A (1955) Negative thixotropy of aqueous solutions in polymethacrylic acid. Nature 1119

  • Tanner RI, Simmons JM (1967) Combined simple and sudusoidal shearing in elastic liquids. Chem Engng Sci 22:1803–1815

    Google Scholar 

  • Tsebrenko MV, Yakob M, Kuchinka MYu, Yudin AV, Vinogradov GV (1974) Fibrillation of crystallizable polymers in flow exemplified by melt mixtures of polyoxymethylene and copolyamides. Intern J Polymeric Materials 3:99–116

    Google Scholar 

  • Tsebrenko MV, Danilova GP, Malkin AYa (1989) Fracture of ultrafine fibers in the flow of mistures of non-Newtonian polymer melts. J Non-Newtonian Fluid Mech 31:1–26

    Google Scholar 

  • Truesdell CA (1980) Sketch for a history of constitutive relations. In: Astarita G, Marrucci G, Nicolais L (eds) Rheology vol 1. Plenum Press, NY London (Proceed of VIII Intern Congress on Rheology, Naples, 1989)

    Google Scholar 

  • Ver Strate G, Philippoff W (1974) Phase separation in flow of polymer solutions. J Polymer Sci: Polymer Letters 12:267–275

    Google Scholar 

  • Vinogradov GV, Malkin AYa, Leonov AI (1963) Conditions of unstable flow of visco-elastic polymer systems. Kolloid-Z 191:25–30

    Google Scholar 

  • Vinogradov GV, Malkin AYa, Plotnikova EP, Kargin VA (1964) On thixotropy of polymers in viscous state. Doklady Akademii Nauk SSSR 154:1421–1424

    Google Scholar 

  • Vinogradov GV, Malkin AYa, Shumsky VF (1970) High elasticity, normal and shear stresses on shear deformations of lowmolecular weight polyisobutylene. Rheol Acta 9:155–163

    Google Scholar 

  • Vinogradov GV, Malkin AYa, Plotnikova EP, Sabsai OYu, Nikolaeva NE (1972a) Viscoelastic properties of filled polymers. Intern J Polymeric Materials 2:1–27

    Google Scholar 

  • Vinogradov GV, Malkin AYa, Yanovskii YuG, Borisenkova EK, Yarlykov BV, Berezhnaya GV (1972b) Viscoelastic properties and flow of narrow distribution polybutadienes and polyisoprenes. J Polymer Sci A-2 10:1061–1084

    Google Scholar 

  • Vinogradov GV, Malkin AYa (1973) The effect of molecular weight and concentration of polymers in solutions on the normal stress coefficient. In: Harris J (ed) The Karl Weissenberg 80th birthday celebration essays. East African Literature Bureau Kampala, pp 65–80

  • Vinogradov GV, Malkin AYa, Volosevitch VV (1975a) Some fundamental problems in viscoelastic behavior of polymers in shear and extension. Appl Polymer Sympos No 27:47–59

  • Vinogradov GV, Malkin AYa, Volosevitch VV, Shatalov VP, Yudin VP (1975b) Flow, high-elastic (recoverable) deformation, and rupture of uncured high molecular weight linear polymers in uniaxial extension. J Polymer Sci: Polymer Phys Ed 13:1721–1735

    Google Scholar 

  • Vinogradov GV, Malkin AYa (1980) Rheology of polymers. Springer, Heidelberg Berlin - Mir Moscow

    Google Scholar 

  • Vinogradov GV (1981) Limiting regimes of deformation of polymers. Polymer Engng Sci 21:339–351

    Google Scholar 

  • Voigt W (1894) Ueber eine anscheinend nothwendige Erweiterung der Theorie der Elasticität. Ann Phys Chem 52:536–555

    Google Scholar 

  • Volarovitch MP, Tolstoi DM (1933) Determinations of constants in plastic flow of mineral suspensions... Th Fiz Khim IV:815–831 (in Russian)

    Google Scholar 

  • Wada Y, Nakayama A (1971) Necking of high-density polyethylene. J Appl Polymer Sci 15:183–197

    Google Scholar 

  • Wagner MH, Schaeffer J (1993) Rubbers and polymer melts: Universal aspects of nonlinear shear-strain relations. J Rheol 37:643–661

    Google Scholar 

  • White JL, Metzner AB (1963) Development of constitutive equations for polymeric melts and solutions. J Appl Polymer Sci 7:1867–1889

    Google Scholar 

  • Wolarowitch MP, Samarina KI (1935) Über Viscosität und Plastizitat disperser Systeme. Kolloid-Z 70:280–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malkin, A.Y. Non-linearity in rheology —an essay of classification. Rheol Acta 34, 27–39 (1995). https://doi.org/10.1007/BF00396052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396052

Key words

Navigation