Skip to main content
Log in

Die Rolle der Phosphorylase im Stoffwechsel der Stärke in den Plastiden

The role of phosphorylase in starch metabolism in plastids

  • Published:
Planta Aims and scope Submit manuscript

Summary

Two phosphorylases could be detected on gel-electropherograms of leaf-extracts of Spinacia oleracea and of immature cotyledons of Vicia faba. These two phosphorylases could be separated by means of ammonium sulfate fractionation. Both the slower migrating phosphorylases from spinach and from beans, but not the fast one from beans, could be adsorbed on amyloplasts. This process takes place only when the amyloplasts are suspended in a salt medium. The slow phosphorylases can also be adsorbed on chloroplasts. The specific activity of the amyloplast-adsorbable phosphorylase in spinach leaves is about ten times higher in the cytoplasmatic fraction than in chloroplasts, a fact which suggests that this phosphorylase is localised in the cytoplasma. The addition of ADP or ATP to the reaction mixture had no influence on the synthesizing activity of the slow phosphorylases when they were tested with soluble amylopectin as a primer or while they were adsorbed on amyloplasts. The presence of ADPG and UDPG was inhibitory.

The results reported above suggest that phosphorylase could catalyse the synthesis of starch in the plastids when photophosphorylation or oxidative phosphorylation occurs. This starch synthesis could be controlled by the concentration of ADPG. When, on the other hand, the ATP/Pi ratio is low, phosphorylase would be involved in starch breakdown. This reverse reaction is also regulated by the concentration of glucosylnucleotides.

Zusammenfassung

Durch Umfällung mit Ammoniumsulfat konnten die zwei, auf Gelelektropherogrammen nachweisbaren Phosphorylasen aus Blättern von Spinacia oleracea und aus unreifen Kotyledonen von Vicia faba getrennt werden. Die im elektrischen Feld langsamer wandernde Phosphorylase von Vicia und Spinat kann in Gegenwart salzhaltiger Medien auf Amyloplasten oder auch an Chloroplasten adsorbiert werden und dort den Aufbau von Stärke aus Glucose-1-Phosphat katalysieren. Das schneller wandernde Enzym aus Vicia faba zeigt diese Adsorption jedoch nicht. Die spezifische Aktivität der an Amyloplasten adsorbierbaren Phosphorylase aus Spinatblättern its in der cytoplasmatischen Fraktion etwa zehnfach höher als in den Chloroplasten. Die synthetisierende Aktivität der langsam wandernden Phosphorylasen wird durch ADP oder ATP nicht beeinflußt, dagegen hemmen sowohl ADP-Glucose als auch UDP-Glucose.

Es wird die Möglichkeit diskutiert, daß Phosphorylase nicht nur den Abbau von Stärke katalysiert, sondern auch an ihrer Synthese in den Plastiden beteiligt ist, wenn Photophosphorylierung oder oxydative Phosphorylierung stattfindet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Aimi, R., and T. Murakami: Research of phosphorylase-protein by means of paper electrophoresis. Kagaku (Tokyo) 24, 632–633 (1954).

    Google Scholar 

  • ——, and K. Fujimaki: Physiological studies on mechanism of ripening in rice plant. Proc. Crop. Sci. Soc. Japan 25, 124–127 (1956).

    Google Scholar 

  • Akazawa, T., T. Minamikawa, and T. Murata: Enzymic mechanism of starch synthesis in ripening rice grains. Plant Physiol. 39, 371–378 (1964).

    Google Scholar 

  • Arnon, D. I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).

    Google Scholar 

  • — M. B. Allen, and F. R. Whatley: Photosynthesis by isolated chloroplasts. Nature (Lond.) 174, 394–396 (1954).

    Google Scholar 

  • — F. R. Whatley, and M. B. Allen: Assimilatory power in photosynthesis. Science 127, 1026–1034 (1958).

    Google Scholar 

  • Badenhuizen, N. P.: Chemistry and biology of the starch granule. In: Protoplasmatologia II, B 2 b, S. 42–46. Wien: Springer 1958.

    Google Scholar 

  • —, and R. W. Dutton: Growth of 14C-labelled starch granules in potato tubers, as revealed by autoradiographs. Protoplasma (Wien) 47, 156–163 (1956).

    Google Scholar 

  • Barker, S. A., E. J. Bourne, I. A. Wilkinson, and S. Peat: The enzymic synthesis and degradation of starch. Part VI. The properties of purified P- and Q-enzymes. J. chem. Soc. (Lond.) 1950, 84–92 (1950).

    Google Scholar 

  • Baum, H. A., and G. A. Gilbert: The anaerobic fractionation of potato starch. Chem. and Ind. (Lond.) 1954, 490 (1954).

    Google Scholar 

  • Bird, I. F., H. K. Porter, and C. R. Stocking: Intracellular localisation of enzymes associated with sucrose synthesis in leaves. Biochim. biophys. Acta (Amst.) 100, 366–375 (1965).

    Google Scholar 

  • Cardini, C. E., L. F. Leloir, and J. Chiriboga: The biosynthesis of sucrose. J. biol. Chem. 214, 149–155 (1955).

    Google Scholar 

  • Doi, A., K. Doi, and Z. Nikuni: ADP-D-glucose: α-1,4-glucan α-4-glucosyltransferase in spinach chloroplasts. Biochim. biophys. Acta (Amst.) 92, 628–630 (1964).

    Google Scholar 

  • ———: ADP-D-glucose: α-1,4-glucan α-4-glucosyltransferase in spinach chloroplasts. Partial purification and some properties of the enzyme. Biochim. biophys. Acta (Amst.) 113, 312–320 (1966).

    Google Scholar 

  • Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith: Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28, 350–356 (1956).

    Google Scholar 

  • Ewart, M. H., D. Siminovitch, and D. R. Briggs: Studies on the chemistry of the living bark of the black locust in relation to its hardiness. VIII. Possible enzymatic process involved in starch-sucrose interconversion. Plant Physiol. 29, 407–413 (1954).

    Google Scholar 

  • Fekete, M. A. R. de: Interaction of amyloplasts with enzymes. I. Phosphorylase adsorption on amyloplasts in Vicia faba. Arch. Biochem. 116, 368–374 (1966).

    Google Scholar 

  • —, and C. E. Cardini: Mechanism of glucose transfer from sucrose into the starch granule of sweet corn. Arch. Biochem. 104, 173–184 (1964).

    Google Scholar 

  • — L. F. Leloir, and C. E. Cardini: Mechanism of starch biosynthesis. Nature (Lond.) 187, 918–919 (1960).

    Google Scholar 

  • Forti, G., and B. Parisi: Evidence for the occurence of cyclic photophosphorylation in vivo. Biochim. biophys. Acta (Amst.) 71, 1–6 (1963).

    Google Scholar 

  • Fredrick, J. F.: Multiple molecular forms of 4-glucosyl transferase (phosphorylase) in Oscillatoria princeps. Phytochemistry 1, 153–157 (1962).

    Google Scholar 

  • Frydman, R. B.: Starch synthetase of potatoes and waxy maize. Arch. Biochem. 102, 242–248 (1963).

    Google Scholar 

  • —, and C. E. Cardini: Soluble enzymes related to starch synthesis. Biochem. biophys. Res. Commun. 17, 407–411 (1964).

    Google Scholar 

  • ——: Studies on the biosynthesis of starch. I. Isolation and properties of the soluble adenosine diphosphate glucose: starch glucosyltransferase of Solanum tuberosum. Arch. Biochem. 116, 9–18 (1966).

    Google Scholar 

  • Ghosh, H. P., and J. Preiss: The biosynthesis of starch in spinach chloroplasts. J. biol. Chem. 240, PC960-PC962 (1965).

    Google Scholar 

  • ——: Biosynthesis of starch in spinach chloroplasts. Biochemistry 4, 1354–1361 (1965).

    Google Scholar 

  • Hanes, C. S.: The breakdown and synthesis of starch by an enzyme system form pea seeds. Proc. roy. Soc. B 128, 421–450 (1940).

    Google Scholar 

  • —: The reversible formation of starch from glucose-1-phosphate catalized by potato phosphorylase. Proc. roy. Soc. B 129, 174–208 (1940).

    Google Scholar 

  • Heber, U., K. A. Santarius, W. Urbach u. W. Ullrich: Photosynthese und Phosphathaushalt. Intrazellulärer Transport von 14C- und 32P-markierten Intermediärprodukten zwischen den Chloroplasten und dem Cytoplasma und seine Folgen für die Regulation des Stoffwechsels. Z. Naturforsch. 19b, 576–587 (1964).

    Google Scholar 

  • Hobson, P. N., W. J. Whelan, and S. Peat: The enzymic synthesis and degradation of starch. Part X. The phosphorylase and Q-enzyme of broad bean. The Q-enzyme of wrinkled pea. J. chem. Soc. (Lond.) 1950, 3566–3573 (1950).

    Google Scholar 

  • Jagendorf, A. T., and M. Smith: Uncoupling phosphorylation in spinach chloroplasts by absence of cations. Plant Physiol. 37, 135–141 (1962).

    Google Scholar 

  • Kandler, O.: Über die Beziehungen zwischen Phosphathaushalt und Photosynthese. I. Phosphatspiegelschwankungen bei Chlorella pyrenoidosa als Folge des Licht-Dunkel-Wechsels. Z. Naturforsch. 5b, 423–437 (1950).

    Google Scholar 

  • Komuro, T., K. Yano, and S. Hattori: The changes in the starch content of tobacco leaves by dark treatment. Bot. Mag. (Tokyo) 79, 376–380 (1966).

    Google Scholar 

  • Krall, A. R.: A light reversible carbon monoxide inhibition of isotopic phosphate uptake by photosynthesizing barley. In: Research in photosynthesis, p. 313–332. New York: Interscience Publ. 1957.

    Google Scholar 

  • Krisman, C. R.: A method for the colorimetric estimation of glycogen with iodine. Analyt. Biochem. 4, 17–23 (1962).

    Google Scholar 

  • Leloir, L. F.: Nucleoside diphosphate sugars and saccharide synthesis. Biochem. J. 91, 1–8 (1964).

    Google Scholar 

  • — M. A. R. de Fekete, and C. E. Cardini: Starch and oligosaccharide synthesis from uridine diphosphate glucose. J. biol. Chem. 236, 636–641 (1961).

    Google Scholar 

  • Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall: Protein measurements with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  • Madison, J. H.: The intracellular location of phosphorylase in tobacco (Nicotiana tabacum L.). Plant Physiol. 31, 387–392 (1956).

    Google Scholar 

  • Madsen, N. B.: The inhibition of glycogen phosphorylase by uridine diphosphate glucose. Biochem. biophys. Res. Commun. 6, 310–313 (1961).

    Google Scholar 

  • Müller, B.: Trennung ganzer von zerstörten Chloroplasten. Naturwissenschaften 54, 520–521 (1967).

    Google Scholar 

  • Murata, T., and Akazawa: The role of adenosine diphosphate glucose in leaf starch formation. Biochem. biophys. Res. Commun. 16, 6–11 (1964).

    Google Scholar 

  • — T. Sugiyama, T. Minamikawa, and T. Akazawa: Enzymic mechanism of starch synthesis in ripening rice grains. III. Mechanism of the sucrose starch conversion. Arch. Biochem. 113, 34–44 (1966).

    Google Scholar 

  • Nomura, T., N. Nakayama, T. Murata, and T. Akazawa: Biosynthesis of starch in chloroplasts. Plant Physiol. 42, 327–332 (1967).

    Google Scholar 

  • Porter, H. K.: Synthesis of polysaccharides of higher plants. Ann. Rev. Plant Physiol. 13, 303–328 (1962).

    Google Scholar 

  • Recondo, E., and L. F. Leloir: Adenosine diphosphate glucose and starch synthesis. Biochem. biophys. Res. Commun. 6, 85–88 (1961).

    Google Scholar 

  • Rowan, K. S., and D. H. Turner: Physiology of pea fruits. V. Phosphate compounds in the developing seeds. Aust. J. biol. Sci. 10, 414–425 (1957).

    Google Scholar 

  • Siepmann, R., u. H. Stegemann: Enzym-Elektrophorese in Einschluß-Polymerisaten des Acrylamids. A. Amylasen, Phosphorylasen. Z. Naturforsch. 22b, 949–955 (1967).

    Google Scholar 

  • Snell, F. D., and C. T. Snell: Colorimetric methods of analysis, vol. II, p. 763. Princeton: D. Van Nostrand Co. 1949.

    Google Scholar 

  • Stocking, C. R.: The intracellular location of phosphorylase in leaves. Amer. J. Bot. 39, 283–287 (1952).

    Google Scholar 

  • Whelan, W. J.: Phosphorylases from plants. In: Methods in enzymology, vol. 1, p. 192–200 (S. P. Colowick and N. O. Kaplan, eds.). New York: Academic Press 1955.

    Google Scholar 

  • —: Recent advances in the biochemistry of glycogen and starch. Nature (Lond.) 190, 954–957 (1961).

    Google Scholar 

  • Yin, H. C., and C. N. Sun: Localization of phosphorylase and of starch formation in seeds. Plant Physiol. 24, 103–110 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Fekete, M.A.R. Die Rolle der Phosphorylase im Stoffwechsel der Stärke in den Plastiden. Planta 79, 208–221 (1968). https://doi.org/10.1007/BF00396028

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396028

Navigation