Skip to main content
Log in

Structure, composition, and distribution of plastid nucleoids in Narcissus pseudonarcissus

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The size, frequency and distribution of the nucleoids of chloroplasts (cl-nucleoids) and chromoplasts (cr-nucleoids) of the daffodil have been investigated in situ using the DNA-specific fluorochrome 4′6-diamidino-2-phenylindole. Chromoplasts contain fewer nucleoids (approx. 4) than chloroplasts (> 10), and larger chromoplasts (cultivated form, approx. 4) contain more than smaller ones (wild type, approx. 2). During chromoplast development the nucleoid number decreases in parallel with the chlorophyll content. Each nucleoid contains 2–3 plastome copies on average. In chloroplasts the nucleoids are evenly distributed, whereas they are peripherally located in chromoplasts. The fine structure of isolated cl-and cr-nucleoids, purified either by Sepharose 4B-CL columns or by metrizamide gradients, was investigated electron microscopically. The cl-nucleoids consist of a central protein-rich core with ‘naked’ DNA-loops protruding from it. In cr-nucleoids, on the other hand, the total DNA is tightly packed within the proteinaceous core. The protein-containing core region of the nucleoids is made up of knotty and fibrillar sub-structures with diameters of 18 and 37 nm, respectively. After proteinase treatment, or incressing ion concentration, most of the proteins are removed and the DNA is exposed even in the case of cr-nucleoids, the stability of which proved to be greater than that of cl-nucleoids. The chemical composition of isolated plastid nucleoids has been determined qualitatively and quantitatively. Chromoplast-nucleoids contain, relative to the same DNA quantity, about six times as much protein as cl-nucleoids. Accordingly the buoyant density of cr-nucleoids in metrizamide gradients is higher than that of cl-nucleoids. In addition to DNA and protein, RNA could be found in the nucleoid fraction. No pigments were present. The cr-and cl-nucleoids have many identical proteins. There are, however, also characteristic differences in their protein pattern which are possibly related to the different expression of the genomes of chloroplasts and chromoplasts. Nucleoids of both plastid types contain some proteins which also occur in isolated envelope membranes (probably partly in the outer membrane) and thus possibly take part in binding the DNA to membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cl-:

chloroplast

cr-:

chromoplast

DAPI:

4′6-diamidino-2-phenylindole

DNase:

deoxyribonuclease

kDa:

kilodaltons

MG:

purified by metrizamide gradients

SC:

purified by Sepharose CL-4B column gel filtration

SDS-PAGE:

sodium dodecylsulfate-polyacrylamide gel electrophoresis

References

  • Ames, G.F.-L., Nikaido, K. (1976) Two-dimensional gel electrophoresis of membrane proteins. Biochemistry 15, 616–623

    Google Scholar 

  • Arnon, D.J. (1949) Copper enzymes in isolated chlorplasts. Phenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15

    Google Scholar 

  • Bisset, K.A. (1970) The cytology and life history of bacteria (3rd edn.). Livingstone, Edinburgh London

    Google Scholar 

  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254

    Google Scholar 

  • Briat, J.F., Gigot, C., Laulhère, J.P., Mache, R. (1982) Visualization of a spinach plastid transcriptionally active DNA-protein complex in a highly condensed structure. Plant Physiol. 69, 1205–1211

    Google Scholar 

  • Briat, J.F., Laulhère, J.P., Mache, R. (1979) Transcription activity of a DNA-protein complex isolated from spinach isolated from spinach plastids. Eur. J. Biochem. 98, 285–292

    Google Scholar 

  • Burton, K. (1956) A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62, 315–323

    Google Scholar 

  • Bürck, R.R., Eschenbruch, M., Leuthard, P., Steck, G. (1983) Sensitive detection of proteins and peptides in polyacrylamide gels after formaldehyde fixation. Methods Enzymol. 91, 247–254

    Google Scholar 

  • Caron, F., Jacq, C., Rouvière-Yaniv, J. (1979) Characterization of a histone-like proteins extracted from yeast mitochondria. Proc. Natl. Acad. Sci. USA 76, 4265–4269

    Google Scholar 

  • Chua, N.-H. (1980) Electrophoretic analysis of chloroplast proteins. Methods Enzymol. 69, 434–446

    Google Scholar 

  • Cleveland, D.W., Fischer, S.G., Kirschner, M.W., Laemmli, U.K. (1977) Peptide mapping by limited proteolysis in sodium dodecylsulfate and analysis by gel electrophoresis. J. Biol. Chem. 252, 1102–1106

    Google Scholar 

  • Coleman, A.W. (1978) Visualization of chlorplast DNA with the fluorochromes. Exp. Cell Res. 114, 95–100

    Google Scholar 

  • Daniel, J.W., Baldwin, H.H. (1964) Methods of culture for plasmodial myxomycetes. Methods Cell Physiol. 1, 9–42

    Google Scholar 

  • Dörle, H. (1981) Zahl und Verteilung der Nucleoide in unterschiedlichen Plastidentypen. Staatsexamensarbeit, Univ. Freiburg

  • Flügge, J.-J., Heldt, H.W. (1977) Specific labelling of a protein involved in phosphate transport of chloroplasts by pyridoxal-5′-phosphate. FEBS Lett. 82, 29–33

    Google Scholar 

  • Griffith, J.D. (1976) Visualization of prokaryotic DNA in a regulary condensed chromatin-like fiber. Proc. Natl. Acad. Sci. USA 73, 563–567

    Google Scholar 

  • Griffith, J.D., Christiansen, G. (1978) Electron microscope visualization of chromatin and other DNA-protein complexes. Annu. Rev. Biophys. Bioeng. 7, 19–35

    Google Scholar 

  • Hallick, R.B., Lipper, C., Richards, O.C., Rutter, W.J. (1976) Isolation of a transcriptionally active chromosome from chloroplasts of Euglena gracilis. Biochemistry 15, 3039–3045

    Google Scholar 

  • Hansmann, P., Sitte, P. (1984) Comparison of the polypeptide complement of different plastid types and mitochondria of Narcissus pseudonarcissus. Z. Naturford. Teil C 39, 758–766

    Google Scholar 

  • Heindrich, H., Olsen, W. (1975) DNA-envelope complexes from Escherichia coli. J. Cell Biol. 67, 444–460

    Google Scholar 

  • Hendrickson, W.G, Kusano, T., Yamaki, H., Balakrishnan, R., King, M., Murchie, J., Schaechter, M. (1982) Binding of the origin of replication of Escherichia coli to the outer membrane. Cell 30, 915–923

    Google Scholar 

  • Herrmann, R.G., Kowallik, K.V. (1970) Multiple amounts of DNA related to the size of chloroplasts. II. Comparison of electron-microscopic and autoradiographic data. Protoplasma 69, 365–372

    Google Scholar 

  • Herrmann, R.G., Kowallik, K.V., Bohnert, H.J. (1974) Structural and functional aspects of the plastome. I. The organization of the plastome. Port. Acta Biol. Ser. A. 14, 91–110

    Google Scholar 

  • Hilz, H., Wiegers, U., Adamietz, P. (1975) Stimulation of proteinase K action by denaturing agents: degradation of ‘masked proteins’. Eur. J. Biochem. 56, 103–108

    Google Scholar 

  • James, T.W., Jope, C. (1978) Visualization by fluorescence of chloroplast DNA in higher plants by means of the DNA-specific probe DAPI. J. Cell Biol. 79, 623–630

    Google Scholar 

  • Kellenberger, E., Ryter, A., Sechaud, J. (1958) Electron microscope study of DNA-containing plasms. J. Biochem. Cytol. 4, 671–678

    Google Scholar 

  • Knoth, R., Herrmann, F.H., Böttger, M., Börner, T. (1974) Struktur und Funktion der genetischen Information in den Plastiden. XI. DNA in normalen und mutierten Plastiden der Sorte ‘Mrs. Parker’ von Pelargonium zonale. Biochem. Physiol. Pflanz. 166, 129–148

    Google Scholar 

  • Kolodner, R., Tewari, K.K. (1975) The molecular size and conformation of the chloroplast DNA from higher plants. Biochim. Biophys. Acta 402, 372–390

    Google Scholar 

  • Kowallik, K.V., Herrmann, R.G. (1972a) Variable amounts of DNA related to the size of chloroplasts. IV. Three-dimensional arrangement of DNA in fully differentiated chloroplasts of Beta vulgaris L. J. Cell Sci. 11, 357–377

    Google Scholar 

  • Kowallik, K.V., Herrmann, R.G. (1972b) Do chromoplasts contain DNA? I. Electron-microscopic investigation of Narcissus chromoplasts. Protoplasma 74, 1–6

    Google Scholar 

  • Kreuz, K., Kleinig, H. (1981) Chlorophyl synthetase in chlorophyll-free chromoplasts. Plant Cell Reports 1, 40–42

    Google Scholar 

  • Kuroiwa, T. (1982) Mitochondrial nuclei. Int. Rev. Cytol. 75, 1–59

    Google Scholar 

  • Kuroiwa, T., Kawano, S., Hizume, M. (1976) A method of isolation of mitochondrial nucleoid of Physarum polycephalum and evidence for the presence of a basic protein. Exp. Cell Res. 97, 435–440

    Google Scholar 

  • Kuroiwa, T., Suzuki, T., Ogawa, K., Kawano, S. (1981) The chloroplast nucleus: distribution, number, size, and shape, and a mode for the multiplication of the chloroplast genome during chloroplast development. Plant Cell Physiol. 22, 381–396

    Google Scholar 

  • Liaaen-Jensen, S., Jensen, A. (1971) Quantitative determination of carotenoids in photosynthetic tissues. Methods Enzymol. 23, 586–602

    Google Scholar 

  • Liedvogel, B. (1976) DNA content and ploidy of chromoplasts. Naturwissenschaften 63, 248

    Google Scholar 

  • Liedvogel, B., Kleinig, H. (1976) Galactolipid synthesis in chromoplasts internal membranes from the daffodil. Planta 129, 19–21

    Google Scholar 

  • Liedvogel, B., Sitte, P. (1974) Lipids and proteins in lipid-rich chromoplast membranes. Naturwissenschaften, 61, 131

    Google Scholar 

  • Liedvogel, B., Sitte, P., Falk, H. (1976) Chromoplasts in daffodil: fine structure and chemistry. Cytobiologie 12, 155–174

    Google Scholar 

  • Marusyk, R., Sergeant, A. (1980) A simple method for dialysis of small-volume samples. Anal. Biochem. 105, 403–404

    Google Scholar 

  • Miller, O.L., Beatty, B.R. (1969) Visualization of nucleolar genes. Sciences 164, 955

    Google Scholar 

  • Nass, M.M.K., Nass, S. (1962) Fibrous structures within the matrix of developing chick embryo mitochondria. Exp. Cell Res. 26, 424–427

    Google Scholar 

  • Nicolaides, A., Holland, I.B. (1978) Evidence for the specific association of the chromosomal origin with outer membrane fractions isolated from Escherichia coli. J. Bacteriol. 135, 178–189

    Google Scholar 

  • O'Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021

    Google Scholar 

  • Ogur, M., Rosen, G. (1950) The nucleic acid of plant tissues. The extraction and estimation of deoxypentose nucleic acid and pentose nucleic acid. Arch. Biochem. 25, 262–276

    Google Scholar 

  • Pettijohn, D.E. (1982) Structure and properties of the bacterial nucleoid. Cell 30, 667–669

    Google Scholar 

  • Possingham, J., Chaly, N., Robertson, M., Cain, P. (1983) Studies of the distribution of DNA within spinach plastids. Biol. Cell 47, 205–212

    Google Scholar 

  • Rickwood, D. (1978) Isopycnic centrifugation in non-ionic media. In: Centrifugal separations in molecular and cell biology, pp. 219–250, Birnie, G.D., Rickwood, D., eds. Butterworths, London Boston Sydney Wellington Durban Toronto

    Google Scholar 

  • Rickwood, D., MacGillivray, A.J. (1977) Quantitative aspects of the binding of nuclear non-histone proteins to DNA as determined by centrifugation in metrizamide gradients. Exp. Cell Res. 104, 287–292

    Google Scholar 

  • Righetti, P.G., Tudor, G., Gianazza, E. (1982) Effect of 2-mercaptoethanol on pH gradients in isoelectric focusing. J. Biochem. Biophys. Methods 6, 219–227

    Google Scholar 

  • Ris, H., Plaut, W. (1962) Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J. Cell Biol. 13, 383–387

    Google Scholar 

  • Rose, R.J. (1979) The association of chloroplast DNA with photosynthetic membrane vesicles from spinach chloroplasts. J. Cell Sci. 36, 169–183

    Google Scholar 

  • Rose, R.J., Lindbeck, A.G.C. (1982) Morphological studies on the transcription of spinach chloroplast DNA. Z. Pflanzenphysiol. 106, 129–137

    Google Scholar 

  • Rose, R.J., Possingham, J.V. (1976) The localization of [3H]thymidine incorporation in the DNA of replicating spinach chloroplasts by electron-microscope autoradiography. J. Cell Sci., 20, 341–355

    Google Scholar 

  • Sauter, H. (1978) Morphologische und biochemische Untersuchungen zur Chromoplastenentwicklung in der Nebenkrone der Gelben Narzisse. Staatsexamensabeit, Univ. Freiburg

  • Schacterle, G.R., Pollack, R.L. (1973) A simplified method for the quantitative assay of small amounts of protein in biological material. Anal. Biochem. 51, 654–655

    Google Scholar 

  • Scott, S.N., Possingham, J.V. (1980) Chloroplast DNA in expanding spinach leaves. J. Exp. Bot. 31, 1081–1092

    Google Scholar 

  • Siegenthaler, P.-A., Nguyen, T.D. (1983) Proteins and polypeptides of envelope membranes from spinach chloroplasts. I. Isoelectric focusing and sodium dodecylsulfate polyacrylamide gel electrophoresis separations. Biochim. Biophys. Acta, 722, 226–233

    Google Scholar 

  • Sitte, P. (1976) Feinstruktur, Entwicklung und Biochemie von chromoplasten. In: Jahresber. Sonderforschungsbereich ‘Molekulare Grundlagen der Entwicklung’, pp. 134–135, Freiburg i. Br.

  • Sitte, P., Falk, H., Liedvogel, B. (1980) Chromoplasts. In: Pigments in Plants 2nd ed., pp. 117–148. Czygan, F.-C., ed. Fischer, Stuttgart New York

    Google Scholar 

  • Suzuki, T., Kawano, S., Kuroiwa, T. (1982) Structure of threedimensional rod-shaped mitochondrial nucleoids isolated from the slime mould Physarum polycephalum. J. Cell Sci. 58, 241–261

    Google Scholar 

  • Suzuki, T., Kuroiwa, T., Kawano, S. (1980) Isolation and morphological characterization of Physarum polycephalum mitochondrial nucleoids. J. Electron Microsc. 29, 383–389

    Google Scholar 

  • Thompson, J.A. (1980) Apparent identity of chromoplast and chloroplast DNA in the daffodil, Narcissus pseudonarcissus. Z. Naturforsch. Teil C 35, 1101–1103

    Google Scholar 

  • Werner-Washburne, M., Cline, K., Keegstra, K. (1983) Analysis of pea chloroplast inner and outer envelope membrane proteins by two-dimensional gel electrophoresis and their comparison with stromal proteins. Plant Physiol 73, 569–575

    Google Scholar 

  • Woodcock, C.L.F., Fernández-Morán, H. (1968) Electron microscopy of DNA conformations in spinach chloroplsts. J. Mol. Biol. 31, 627–631

    Google Scholar 

  • Yoshida, Y. (1981) Configurations indicative of functional sites in spinach chloroplasts DNA. Cell Biol. Int. Rep. 5, 115–123

    Google Scholar 

  • Yoshida, Y., Laulhère, J.P., Rozier, C., Mache, R. (1978) Visualization of folded chloroplast DNA from spinach. Biol. Cellulaire. 32, 187–319

    Google Scholar 

  • Young, E.T., Sinsheimer, R.L. (1967) Vegetative bacteriophage lambda DNA. II. Physical characterization and replication. J. Mol. Biol. 30, 165–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansmann, P., Falk, H., Ronai, K. et al. Structure, composition, and distribution of plastid nucleoids in Narcissus pseudonarcissus . Planta 164, 459–472 (1985). https://doi.org/10.1007/BF00395961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00395961

Key words

Navigation