Skip to main content
Log in

The proteotytic systems of lactic acid bacteria

  • Metabolism
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The proteolytic system consists of an extracellularly located serine-proteinase, transport systems specific for di-tripeptides and oligopeptides (> 3 residues), and a multitude of intracellular peptidases. This review describes the properties and regulation of individual components as well as studies that have led to identification of their cellular localization. Targeted mutational techniques developed in recent years have made it possible to investigate the role of individual and combinations of enzymes in vivo. Based on these results as well as in vitro studies of the enzymes and transporters, a model for the proteolytic pathway is proposed. The main features are: (i) proteinases have a broad specificity and are capable of releasing a large number of different oligopeptides, of which a large fraction falls in the range of 4 to 8 amino acid residues; (ii) oligopeptide transport is the main route for nitrogen entry into the cell; (iii) all peptidases are located intracellularly and concerted action of peptidases is required for complete degradation of accumulated peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora G & Lee BH (1992) Purification and characterization of aminopeptidase from Lactobacillus casei subsp. casei LLG. J. Dairy Sci. 75: 700–710

    Google Scholar 

  • Atlan D, Gilbert C, Blanc B & Portalier R (1994) Cloning, sequencing and characterizatioon of the pepIP gene encoding a proline iminopeptidase from Lactobacillus delbrückii subsp. bulgaricus CNRZ397. Microbiology 140: 527–535

    Google Scholar 

  • Atlan D, Laloi P & Portalier R (1990) X-prolyl-dipeptidyl aminopeptidase of Lactobacillus delbrückii subsp. bulgaricus: Characterization of the enzyme and isolation of deficient mutants. Appl. Environ. Microbiol. 56: 2174–2179

    Google Scholar 

  • Baankreis R (1992) The role of lactococcal peptidases in cheese ripening. University of Amsterdam, Ph.D. Thesis

  • Baankreis R & Exterkate R (1991) Characterization of a peptidase from Lactococcus lactis ssp. cremoris HP that hydrolyses diand tripeptides containing proline or hydrophobic residues as the aminoterminal amino acid. Syst. Appl. Microbiol. 14: 317–323

    Google Scholar 

  • Bacon CL, Jennings PV, Fhaolain IN & O'Cuinn G (1994) Purification and characterization in an aminopeptidase A from cytoplasm of Lactococcus lactis subsp. cremoris AM2. Int. Dairy J. 4: 503–519.

    Google Scholar 

  • Bacon CL, Wilkinson M, Jennings PV, Fhaoláin IN & O'Cuinn G (1993) Purification and characterization of an aminotripeptidase from cytoplasm of Lactococcus lactis subsp. cremoris AM2. Int. Dairy J. 3: 163–177

    Google Scholar 

  • Benfeldt C, Larsen LB, Rasmussen JT, Andreasen PA & Petersen TE (1994) Isolation and characterization of plasminogen and fragments of plasminogen from bovine milk. Int. Dairy J. 4

  • Blanc B, Laloi P, Atlan D, Gilbert C & Portalier R (1993) Two cell-wall-associated aminopeptidases from Lactobacillus helveticus and the purification and characterization of APII from strain ITGL1. J. Gen. Microbiol. 139: 1441–1448

    Google Scholar 

  • Bockelmann W, Fobker M & Teuber M (1991) Purification and characterization of the X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus delbrückii subsp. bulgaricus and Lactobacillus acidophilus. Int. Dairy J. 1: 51–66.

    Google Scholar 

  • Bockelmann W, Monnet V, Geis A, Teuber M & Gripon J-C (1989) Comparison of cell wall proteinases from Lactococcus lactis subsp. cremoris AC1 and Lactococcus lactis subsp. lactis NCDO 763. Appl. Microbiol. Biotechnol. 31: 278–282

    Google Scholar 

  • Bockelmann W, Schulz Y & Teuber M (1992) Purification and characterization of an aminopeptidase from Lactobacillus delbrückii subsp. bulgaricus. Int. Dairy J. 2: 95–107

    Google Scholar 

  • Booth M, Phaoláin IN, Jennings PV & O'Cuinn G (1990a) Purification and characterization of a post-proline dipeptidyl aminopeptidase from Streptococcus cremoris AM2. J Dairy Res. 57: 89–99

    Google Scholar 

  • Booth M, Jennings PV, Fhaoláin IN & O'Cuinn G (1990b) Prolidase activity of Lactococcus lactis subsp. cremoris AM2: partial purification and characterization. J. Dairy Res. 57: 245–254

    Google Scholar 

  • Bosman BW, Sasaki M, Iwasaki T & Tan PST (1996) Localization of proteolytic enzymes in Lactobacillus helveticus SBT 2171. Manuscript in preparation

  • Bosman BW, Tan PST & Konings WN (1990) Purification and characterization in a tripeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl. Environ. Microbiol. 56: 1839–1843

    Google Scholar 

  • Bhowmik T, Fernández L & Steele JL (1993) Gene replacement in Lactobacillus helveticus. J. Bacteriol. 175: 6341–6344

    Google Scholar 

  • Buist G, Kok J, Leenhouts KJ, Dabrowska M, Venema G & Haandrikman AJ (1995) Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J. Bacteriol. 177: 1554–1563

    Google Scholar 

  • Chapot-Chartier M-P, Deniel C, Rousseau M, Vassal L & Gripon J-C (1993) Cloning and sequencing of pepC, a cysteine aminopeptidase gene from Lactococcus lactis subsp. cremoris AM2. Appl. Environ. Microbiol. 59: 330–333

    Google Scholar 

  • Chopin A (1993) Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol. Rev. 12: 21–38

    Google Scholar 

  • Christensen JE, Lin D, Palva A & Steele JL (1995) Sequence analysis, distribution and expression of an aminopeptidase N-encoding gene from Lactobacillus helveticus CNRZ32. Gene 155: 89–93

    Google Scholar 

  • Christensen JE & Steele JL (1996) Characterization of peptidase-deficient Lactobacillus helveticus derivatives. Unpublished results

  • Coolbear T, Pillidge CJ & Crow VL (1994) The diversity of potential cheese ripening characteristics of lactic acid starter bacteria: 1. resistance to cell lysis and levels and cellular distribution of proteinase activities. Int. Dairy J. 4: 697–721

    Google Scholar 

  • Coolbear T, Reid JR & Pritchard GG (1992) Stability and specificity of the cell wall-associated proteinase from Lactococcus lactis subsp. cremoris H2 released by treatment with lysozyme in the presence of calcium ions. Appl. Environ. Microbiol. 58: 3263–3270

    Google Scholar 

  • Crow VL, Holland R, Pritchard GG & Coolbear T (1994) The diversity of potential cheese ripening characteristics of lactic acid starter bacteria: 2. The elvels and subcellular distribution of peptidase and esterase activities. Int. Dairy J. 4: 723–742

    Google Scholar 

  • Detmers & Kunji, unpublished results

  • De Vos WM & Siezen RJ (1994) Engineering pivotal proteins for lactococcal proteolysis. In: Andrews AT & Varley J (Eds) Biochemistry of Milk Products, pp 56–71. Royal Society of Chemistry, Cambridge, England

    Google Scholar 

  • Driessen AJM (1994) How proteins cross the bacterial cytoplasmic membrane. J. Membr. Biol. 142: 145–159

    Google Scholar 

  • Dudley EG, Husgen AC, He W & Steele JL (1996) Sequencing. distribution, and inactivation of the dipeptidase A gene (pepDA) from Lactobacillus helveticus CNRZ32. J. Bacteriol. in press

  • Dudley EG & Steele JL (1994) Nucleotide sequence and distribution of the pepPN gene from Lactobacillus helveticus CNRZ32. FEMS Microbiol. Lett. 119: 41–46

    Google Scholar 

  • Dunten P & Mowbray SL (1995) Crystal structure of the dipeptide binding protein from Escherichia coli involved in active transport and chemotaxis. Prot. Sci. 4: 2327–2334

    Google Scholar 

  • Erra-Pujada M, Mistou MY & Gripon J-C (1995) Construction et étude d'une souche de Lactococcus lactis dont le gène pepC n'est plus fonctionnel. 7ème Colloque du Club des Bactéries Lactiques. p 8

  • Exterkate FA (1977) Pyrrolidone carboxylyl peptidase in Streptococcus cremoris: dependence on an interaction with membrane components. J. Bacteriol. 129: 1281–1288

    Google Scholar 

  • (1984) Location of peptidases outside and inside the membrane of Streptococcus cremoris. Appl. Environ. Microbiol. 47: 177–183

    Google Scholar 

  • (1985) A dual-directed control of cell wall proteinase production in Streptococcus cremoris AM1: a possible mechanism of regulation during growth in milk. J Dairy Sci. 68: 562–571

    Google Scholar 

  • Exterkate FA, Alting AC & Bruinenberg PG (1993) Diversity of cell envelope proteinase specificity among strains of Lactococcus lactis and its relationship to charge characteristics of the substrate-binding region. Appl. Environ. Microbiol. 59: 3640–3647

    Google Scholar 

  • Exterkate FA, De Jong M, De Veer GJCM & Baankreis R (1992) Location and characterization of aminopeptidase N in Lactococcus lactis subsp. cremoris HP. Appl. Microbiol. Biotechnol. 37: 46–54

    Google Scholar 

  • Exterkate FA & De Veer GJCM (1987a) Complexity of the native cell wall proteinase of Lactococcus lactis subsp. cremoris HP and purification of the enzyme. System. Appl. Microbiol. 9: 183–191

    Google Scholar 

  • (1987b) Optimal growth of Streptococcus cremoris HP in milk is related to β-and κ-casein degradation. Appl. Microbiol. Biotechnol. 25: 471–475

    Google Scholar 

  • (1987c) Purification and properties of a membrane- bound aminopeptidase A from Streptococcus cremoris. Appl. Environ. Microbiol. 53: 577–583

    Google Scholar 

  • Fang G & Kunji ERS (1996) Unpublished results

  • Fayard B & Mierau I (1996) Dipeptidase (pepV) from Lactococcus lactis subsp. cremoris. Unpublished results

  • Fenster KM, Chen YS & Steele JL (1996) Endopeptidases from Lactobacillus helveticus CNRZ32. Unpublished results

  • Fernández L, Bhowmik T & Steele JL (1994) Characterization of the Lactobacillus helveticus CNRZ32 pepC gene. Appl. Environ. Microbiol. 60: 333–336

    Google Scholar 

  • Foucaud C, Kunji ERS, Hagting A, Richard J, Konings WN, Desmazeaud M & Poolman B (1995) Specificity of peptide transport systems in Lactococcus lactis: Evidence for a third system which transports hydrophobic di- and tripeptides. J. Bacteriol. 177: 4652–4657

    Google Scholar 

  • Foucaud C & Poolman B (1992) Lactose transport protein of Streptococcus thermophilus. Functional reconstitution of the protein and characterization of the kinetic mechanism of transport. J. Biol. Chem. 267: 22087–22094

    Google Scholar 

  • Geis A, Bockelmann W & Teuber T (1985) Simultaneous extraction and purification of a cell wall-associated peptidase and β-casein specific protease from Streptococcus cremoris AC1. Appl. Microbiol. Biotechnol. 23: 79–84

    Google Scholar 

  • Gilbert C, Atlan D, Blanc B & Portalier R (1994) Proline iminopeptidase from Lactobacillus delbrückii subsp. bulgaricus CNRZ397: purification and characterization. Microbiology 140: 537–542

    Google Scholar 

  • Gilbert C, Atlan D, Blanc B, Portalier R, Germond GJ, Lapierre L & Mollet B (1996) A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbrückii subsp. bulgaricus. Submitted for publication

  • Grufferty MB & Fox PF (1988) Milk alkaline proteinase. J. Dairy Res. 4: 609–630

    Google Scholar 

  • Haandrikman AJ (1994) Pyrrolidone carboxylyl peptidase (Pcp) in L. lactis subsp. cremoris. Unpublished results

  • Haandrikman AJ, Kok J, Laan H, Soemitro S, Ledeboer AM, Konings WN & Venema G (1989) Identification of a gene required for the maturation of an extracellular serine proteinase. J. Bacteriol. 171: 2789–2794

    Google Scholar 

  • Haandrikman AJ, Kok J & Venema G (1991) Lactococcal proteinase maturation protein PrtM is a lipoprotein. J. Bacteriol. 173: 4517–4525

    Google Scholar 

  • Habibi-Najafi MB & Lee BH (1994) Purification and characterization of X-prolyl dipeptidyl peptidase from Lactobacillus casei subsp. casei LLG. Appl. Microbiol. Biotechnol. 42: 280–286

    Google Scholar 

  • Hagting A, Kunji ERS, Leenhouts KJ, Poolman B & Konings WN (1994) The di- and tripeptide transport protein of Lactococcus lactis. J. Biol. Chem. 269: 11391–11399

    Google Scholar 

  • Hagting A. Unpublished results

  • Hellendoorn MA & Mierau I (1996) PepO2 of Lactococcus lactis subsp. cremoris. Unpublished results

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Ann. Rev. Cell. Biol. 8: 67–113

    Google Scholar 

  • Holck A & Næs H (1992) Cloning, sequencing and expression of the gene encoding the cell-envelope-associated proteinase from Lactobacillus paracasei subsp. paracasei NCDO151. J. Gen. Microbiol. 138: 1353–1364

    Google Scholar 

  • Holt C & Sawyer L (1988) Primary and predicted secondary structures of the caseins in relation to their biological function. Protein Engineer. 2: 251–259

    Google Scholar 

  • Hugenholtz H, Van Sinderen D, Kok J & Konings WN (1987) Cell wall-associated proteases of Streptococcus cremoris Wg2. Appl. Environ. Microbiol. 53: 853–859

    Google Scholar 

  • Hwang I-K, Kaminogawa S & Yamauchi K (1981) Purification and properties of dipeptidase from Streptococcus cremoris. Agric. Biol. Chem. 45: 159–165

    Google Scholar 

  • l'Anson K, Movahedi S, Griffin HG, Gasson MJ & Mulholland F (1995) A non-essential glutamyl aminopeptidase is required for optimal growth of Lactococcus lactis MG1363 in milk. Microbiology 141: 2873–2881

    Google Scholar 

  • Juillard V, Laan H, Kunji ERS, Jeronimus-Stratingh CM, Bruins AP & Konings WN (1995a) The extracellular P I -type proteinase of Lactococcus lactis hydrolyzes β-casein into more than one hundred different oligopeptides. J. Bacteriol. 177: 3472–3478

    Google Scholar 

  • Juillard V, Le Bars D, Kunji ERS, Konings WN, Gripon J-C & Richard J (1995b) Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl. Environ. Microbiol. 61: 3024–3030

    Google Scholar 

  • Kaminogawa S, Azuma N, Hwang I-K, Suzuki Y & Yamauchi K (1984) Isolation and characterization of a prolidase from Streptococcus cremoris-H61. Agric. Biol. Chem. 48: 3035–3040

    Google Scholar 

  • Khalid NM & Marth EH (1990a) Partial purification and characterization of an aminopeptidase from Lactobacillus helveticus CNRZ32. System. Appl. Microbiol. 13: 311–319

    Google Scholar 

  • (1990b) Purification and partial characterization of a prolyl-dipeptidyl aminopeptidase from Lactobacillus helveticus CNRZ32. Appl. Environ. Microbiol. 56: 381–388

    Google Scholar 

  • Kiefer-Partsch B, Bockelmann W, Geis A & Teuber M (1989) Purification of an X-prolyl-dipeptidyl aminopeptidase from the cell wall proteolytic system of Lactococcus lactis subsp. cremoris. Appl. Microbiol. Biotechnol. 31: 75–78

    Google Scholar 

  • Kiwaki M, Ikemura H, Shimizu-Kadota M & Hirashima A (1989) Molecular characterization of a cell wall-associated proteinase gene from Streptococcus lactis NCDO763. Mol. Microbiol. 3: 359–369

    Google Scholar 

  • Klein JR, Dick A, Schick J, Matern HT, Henrich B & Plapp R (1995) Molecular cloning and DNA sequence analysis of pepL, a leucyl aminopeptidase gene from Lactobacillus delbrückii subsp. lactis DSM7290. Eur. J. Biochem. 228: 570–578

    Google Scholar 

  • Klein J-R, Henrich B & Plapp R (1994a) Cloning and nucleotide sequence analysis of the Lactobacillus delbrückii ssp. lactis DSM7290 cysteine aminopeptidase gene pepC. FEMS Microbiol. Lett. 124: 291–300

    Google Scholar 

  • Klein J-R, Klein U, Schad M & Plapp R (1993) Cloning, DNA sequence analysis and partial characterization of pepN, a lysyl aminopeptidase from Lactobacillus delbrückii subsp. lactis DSM7290. Eur. J. Biochem. 217: 105–114

    Google Scholar 

  • Klein J-R, Schmidt U & Plapp R (1994b) Cloning, heterologous expression, and sequencing of a novel proline iminopeptidase gene, pepI, from Lactobacillus delbrückii subsp. lactis DSM7290. Microbiology 140: 1133–1139

    Google Scholar 

  • Kojic M, Fira D, Banina A & Topisirovic L (1991) Characterization of the cell wall-bound proteinase of Lactobacillus casei HN14. Appl. Environ. Microbiol. 57: 1753–1757

    Google Scholar 

  • Kok J (1990) Genetics of the proteolytic system of lactic acid bacteria. FEMS Microbiol. Rev. 87: 15–42

    Google Scholar 

  • Kok J & De Vos WM (1994) The proteolytic system of lactic acid bacteria. In: Gasson M & De Vos W (Eds) Genetics and Biotechnology of Lactic Acid Bacteria. pp 169–210. Blackie and Professional, London, England

    Google Scholar 

  • Kok J, Leenhouts KJ, Haandrikman AJ, Ledeboer AM & Venema G (1988) Nucleotide sequence of the cell wall-associated proteinase gene of Streptococcus cremoris Wg2. Appl. Environ. Microbiol. 54: 231–238

    Google Scholar 

  • Konings WN, Poolman B & Driessen AJM (1989) Bioenergetics and solute transport in Lactococci. CRC Crit. Rev. Microbiol. 16: 419–476

    Google Scholar 

  • Kontinen VP, Saris P & Sarvas M (1991) A gene (prsA) of Bacillus subtilis is involved in a novel, late stage of protein export. Mol. Microbiol. 5: 1273–1283

    Google Scholar 

  • Kuipers OP, Rollema HS, De Vos WM & Siezen RJ (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis; requirement of expression of the nisA and nisI genes for producer immunity. Eur. J. Biochem. 216: 281–291

    Google Scholar 

  • Kunji ERS, Hagting A, De Vries CJ, Juillard V, Haandrikman AJ, Poolman B & Konings WN (1995) Transport of β-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J. Biol. Chem. 270: 1569–1574

    Google Scholar 

  • Kunji ERS, Mierau I, Poolman B, Konings WN, Venema G & Kok J (1996) Fate of peptides in peptidase mutants of Lactococcus lactis. Mol. Microbiol. (submitted)

  • Kunji ERS, Smid EJ, Plapp R, Poolman B & Konings WN (1993) Ditripeptides and oligopeptides are taken up via distinct transport mechanisms in Lactococcus lactis. J. Bacteriol. 175: 2052–2059

    Google Scholar 

  • Laan H, Bolhuis H, Poolman B, Abee T & Konings WN (1993) Regulation of proteinase synthesis in Lactococcus lactis. Acta Biotechnol. 13: 95–101

    Google Scholar 

  • Laan H & Konings WN (1989) The mechanism of proteinase release from Lactococcus lactis subspecies cremoris Wg2. Appl. Environ. Microbiol. 55: 3103–3106

    Google Scholar 

  • Laloi P, Atlan D, Blanc B, Gilbert C & Portalier R (1991) Cell-wall-associated proteinase of Lactobacillus delbrückii subsp. bulgaricus CNRZ397: differential extraction, purification and properties of the enzyme. Appl. Microbiol. Biotechnol. 36:, 196–204

    Google Scholar 

  • Law BA (1977) Dipeptide utilization by starter streptococci. J. Dairy Res. 44: 309–317

    Google Scholar 

  • (1979) Extracellular peptidases in group N streptococci used as cheese starters. J. Appl. Bacteriol. 46: 455–463

    Google Scholar 

  • Law BA & Kolstad J (1983) Proteolytic systems in lactic acid bacteria. Antonie van Leeuwenhoek 49: 225–245

    Google Scholar 

  • Lazdunski AM (1989) Peptidases and proteases of Escherichia coli and Salmonella typhimurium. FEMS Microbiol. Rev. 63: 265–276

    Google Scholar 

  • Leenhouts (1991) Ph.D. Thesis, University of Groningen

  • Leenhouts KJ, Buist G, Bolhuis A, Ten Berge A, Kiel J, Mierau I, Dabrowska M, Venema G & Kok J (1996) A general system for generating unlabelled gene-replacements in the bacterial chromosome. (Manuscript in preparation)

  • Lloyd RJ & Pritchard GG (1991) Characterization of X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis subsp. lactis H1. J. Gen. Microbiol. 137: 49–55

    Google Scholar 

  • Mars I & Monnet V (1995) An aminopeptidase P from Lactococcus lactis with orginal specificity. Biochim. Biophys. Acta 1243: 209–215

    Google Scholar 

  • Martín-Hernández MC, Alting AC & Exterkate FA (1994) Purification and characterization of the mature, membrane-associated cell-envelope proteinase of Lactobacillus helveticus L89. Appl. Microbiol. Biotechnol. 40: 828–834

    Google Scholar 

  • Marugg JD, Meijer W, Van Kranenburg R, Laverman P, Bruinenberg PG & De Vos WM (1995) Medium-dependent regulation of proteinase gene expression in Lactococcus lactis: Control of trascription by specific dipeptides. J. Bacteriol. 177: 2982–2989

    Google Scholar 

  • Mayo B, Kok J, Bockelman W, Haandrikman A, Leenhouts KJ & Venema G (1993) Effect of X-prolyl dipeptidyl aminopeptidase deficiency on Lactococcus lactis. Appl. Environ. Microbiol. 5: 2049–2055

    Google Scholar 

  • Mayo B, Kok J, Venema K, Bockelman W, Teuber M, Reinke H & Venema G (1991) Molecular cloning and sequencing analysis of the X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. cremoris. Appl. Environ. Microbiol. 57: 38–44

    Google Scholar 

  • Meijer WC, Looijestijn E, Marugg JD & Hugenholtz J (1995) Expression and release of proteolytic starter enzymes during cheese ripening. 7th European Congress on Biotechnology. Poster MEP23

  • Meyer-Barton EC, Klein JR, Imam M & Plapp R (1993) Cloning and sequence analysis of the X-prolyl-dipeptidyl-aminopeptidase gene (pepX) from Lactobacillus delbrückii ssp. lactis DSM7290. Appl. Microbiol. Biotechnol. 40: 82–89

    Google Scholar 

  • Mierau I, Haandrikman AJ, Velterop O, Tan PST, Leenhouts KL, Konings WN, Venema G & Kok J (1994) Tripeptidases gene (pepT) of Lactococcus lactis: Molecular cloning and nucleotide sequencing of pepT and construction of a chromosomal deletion mutant. J. Bacteriol. 176: 2854–2861

    Google Scholar 

  • Mierau I, Kunji ERS, Leenhouts KJ, Hellendoorn MA, Haandrikman AJ, Poolman B, Konings WN, Venema G & Kok J (1996) Multiple peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. (Submitted)

  • Mierau I, Tan PST, Haandrikman AJ, Kok J, Leenhouts KJ, Konings WN & Venema G (1993) Cloning and sequencing of the gene for a lactococcal endopeptidase, an enzyme with sequence similarity to mammalian enkephalinase. J. Bacteriol. 175: 2087–2096

    Google Scholar 

  • Mills OE & Thomas TD (1981) Nitrogen sources for growth of lactic streptococci in milk. N.Z. J. Dairy Sci. Technol. 16: 43–55

    Google Scholar 

  • Mistou M-Y, Rigolet P, Chapot-Chartier M-P, Nardi M, Gripon J-C & Brunie S (1994) Crystallization and preliminary X-ray analysis of PepC, a thiol aminopeptidase from Lactococcus lactis homologous to bleomycin hydrolase. J. Mol. Biol. 237: 160–162

    Google Scholar 

  • Miyakawa H, Kobayashi S, Shimamura S & Tomita M (1992) Purification and characterization of an aminopeptidase from Lactobacillus helveticus LHE-511. J. Dairy Sci. 75: 27–35

    Google Scholar 

  • Molenaar D, Hagting A, Alkema H, Driessen AJM & Konings WN (1993) Characteristics and osmoregulatory roles of uptake systems for proline and glycne betaine in Lactococcus lactis. J. Bacteriol. 175: 5438–5444

    Google Scholar 

  • Momburg F, Roelse J, Howard JC, Butcher GW, Hämmerling GJ & Neefjes JJ (1994) Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 367: 648–651

    Google Scholar 

  • Monnet V, Bockelman W, Gripon J-C & Teuber M (1989) Comparison of cell wall proteinases from Lactococcus lactis subsp. cremoris AC1 and Lactococcus lactis subsp. lactis NCDO 763. Appl. Microbiol. Biotechnol. 31: 112–118

    Google Scholar 

  • Monnet V, LeBars D & Gripon J-C (1986) Specifity of a cell well proteinase from Streptococcus lactis NCDO 763 towards bovine β-casein. FEMS Microbiol. Lett. 36: 127–131

    Google Scholar 

  • (1987) Purification and characterization of a cell wall proteinase from Streptococcus lactis NCDO 763. J. Dairy Res. 54: 247–255

    Google Scholar 

  • Monnet V, Ley JP & Gonzalez S (1992) Substrate specificity of the cell envelope-located proteinase of Lactococcus lactis subsp. lactis NCDO 763. Int. J. Biochem. 24: 707–718

    Google Scholar 

  • Monnet V, Nardi M, Chopin A, Chopin M-C & Gripon J-C (1994) Biochemical and genetic characterization of PepF, an oligopeptidase from Lactococcus lactis. J. Biol. Chem. 269: 32070–32076

    Google Scholar 

  • Muset G, Monnet V & Gripon J-C (1989) Intracellular proteinase of Lactococcus lactis subsp. lactis NCDO 763. J. Dairy Res. 56: 765–778

    Google Scholar 

  • Nakajima H (1996) Amino acid and peptide transport systems. Unpublished results

  • Nardi M, Chopin M-C, Chopin A, Cals M-M & Gripon J-C (1991) Cloning and DNA sequence analysis of an X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. lactis NDCO763. Appl. Environ. Microbiol. 57: 45–50

    Google Scholar 

  • Nardi M, Renault P, Gripon J-C & Monnet V (1995) Duplication d'un gene pepF codant une oligopeptidase chez Lactococcus lactis. 7ème Colloque du Club des Bactéries Lactiques. p 7

  • Næs H & Nissen-Meyer J (1992) Purification and N-terminal amino acid determination of the cell wall bound proteinase from Lactobacillus paracasei subsp. paracasei. J. Gen. Microbiol. 138: 313–318

    Google Scholar 

  • Navarre WW & Schneewind O (1994) Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Grampositive bacteria. Mol. Microbiol. 14: 115–121

    Google Scholar 

  • Neviani E, Boquien CY, Monnet V, PhanThanh L & Gripon J-C (1989) Purification and characterization of an aminopeptidase from Lactococcus lactis subsp. cremoris AM2. Appl. Environ. Microbiol. 55: 2308–2314

    Google Scholar 

  • Niven GW (1991) Purification and characterization of aminopeptidase A from Lactococcus lactis subsp. lactis NCDO712. J. Gen. Microbiol. 137: 1207–1212

    Google Scholar 

  • Niven GW, Holder SA & Strøman P (1995) A study of the substrate specificity of aminopeptidase N from Lactococcus lactis subsp. cremoris. Appl. Microbiol. Biotechnol. 43

  • Olson NF (1990) The impact of lactic acid bacteria on cheese flavor. FEMS Microbiol. Rev. 87: 131–148

    Google Scholar 

  • Payne JW & Smith MW (1994) Peptide transport by microorganisms. In: Rose AH & Tempest DW (Eds) Advances in Microbial Physiology. Vol. 36, pp 2–80. Academic Press, London

    Google Scholar 

  • Poolman B (1993) Energy transduction in lactic acid bacteria. FEMS Microbiol. Rev. 12: 125–148

    Google Scholar 

  • Poolman B, Molenaar D, Smid EJ, Ubbink T, Abee T, Renault PP & Konings WN (1991) Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J. Bacteriol. 173: 6030–6037

    Google Scholar 

  • Poolman B, Kunji ERS, Hagting A, Juillard V & Konings WN (1995) The proteolytic pathway of Lactococcus lactis. J. Appl. Bacteriol. Symp. Suppl. 79: 65–75

    Google Scholar 

  • Pritchard GG & Coolbear T (1993) The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiol. Rev. 12: 179–206

    Google Scholar 

  • Pritchard GG, Freebairn AD & Coolbear T (1994) Purification and characterization of an endopeptidase from Lactococcus lactis subsp. cremoris SK11. Microbiology 140: 923–930

    Google Scholar 

  • Reid JR, Coolbear T, Pillidge CJ & Pritchard GG (1994) Specificity of hydrolysis of bovine κ-casein by cell envelope-associated proteinases from Lactococcus lactis strains. Appl. Environ. Microbiol. 60: 801–806

    Google Scholar 

  • Reid JR, Moore CH, Midwinter GG & Pritchard GG (1991a) Action of a cell wall proteinase from Lactococcus lactis subsp. cremoris SK11 on bovine α S1 -casein. Appl. Microbiol. Biotechnol. 35: 222–227

    Google Scholar 

  • Reid JR, Ng KH, Moore CH, Coolbear T & Pritchard GG (1991b) Comparison of bovine β-casein hydrolysis by PI and PIII-type proteinases from Lactococcus lactis subsp. cremoris. Appl. Microbiol. Biotechnol. 35: 477–483

    Google Scholar 

  • Sahlstrøm S, Chrzanowska J & Sørhaug T (1993) Purification and characterization of a cell wall peptidase from Lactococcus lactis subsp. cremoris IMN-C12. Appl. Environ. Microbiol. 59: 3076–3082

    Google Scholar 

  • Sankaran K & Wu HC (1994) Lipid modification of bacterial prolipoprotein; transfer of diacylglyceryl moiety from phosphatidylglycerol. J. Biol. Chem. 269: 19701–19706

    Google Scholar 

  • Sasaki M, Bosman BW & Tan PST (1995) Comparison of proteolytic activities in various lactobacilli. J. Diary Res. 62: 601–610

    Google Scholar 

  • Sasaki M, (1996a) Characterization of a new, broad substrate specificity aminopeptidase from the dairy organism Lactobacillus helveticus SBT 2171. Microbiol. in press

  • Sasaki M, Bosman BW, Iwasaki T & Tan PST (1996b) The purification and characterization of a 95 kDa X-prolyl-dipeptidyl aminopeptidase from Lactobacillus helveticus SBT 2171. (Submitted)

  • Sasaki M (1996c) The purification and characterization of a new oligopeptidase from Lactobacillus helveticus SBT2171. (Submitted)

  • Schmidt DG (1982) Association of caseins and casein micelle structure. In: Fox PF (Ed) Developments in Dairy Chemistry, vol. 1, pp 61–68, Elsevier, London, U.K.

    Google Scholar 

  • Shao W, Parkin KL & Steele JL (1996) Characterization of two dipeptidases from Lactobacillus helveticus. (Submitted)

  • Smid EJ, Driessen AJM & Konings WN (1989) Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis. J. Bacteriol. 171: 292–298

    Google Scholar 

  • Smid EJ, Poolman B & Konings WN (1991) Casein utilization by lactococci. Appl. Environ. Microbiol. 57: 2447–2452

    Google Scholar 

  • Steiner H-Y, Naider F & Becker JM (1995) The PRT family: a new group of peptide transporters. Mol. Microbiol. 16: 825–834

    Google Scholar 

  • Strøman P (1992) Sequence of a gene (lap) encoding a 95.3-kDa aminopeptidase from Lactococcus lactis ssp. cremoris Wg2. Gene 113: 107–112

    Google Scholar 

  • Stucky K, Hagting A, Klein JR, Matern H, Henrich B, Konings WN & Plapp R (1995a) Cloning and characterization of brnQ; a gene encoding a low affinity branched chain amino acid carrier of Lactobacillus delbrückii subsp. lactis. Mol. Gen. Genet. 249: 682–690

    Google Scholar 

  • Stucky K, Klein JR, Schüller A, Matern H, Henrich B & Plapp R (1995b) Cloning and DNA sequence analysis of pepQ, a prolidase gene from Lactobacillus delbrückii subsp. lactis DSM7290 and partial characterization of its product. Mol. Gen. Genet. 247: 494–500

    Google Scholar 

  • Stucky K, Schick J, Klein JR, Henrich B & Plapp R (1996) Characterization of pepRl, a gene coding for a potential transcriptional regulator of Lactobacillus delbrückii subsp. lactis DSM7290. FEMS Microbiol. Lett. (in press)

  • Swaisgood HE (1993) Symposium: genetic perspectives on milk proteins: comparative studies and nomenclature. J. Dairy Sci. 76: 3054–3061

    Google Scholar 

  • Tame JRH, Murshudov GN, Dodson EJ, Neil TK, Dodson GG, Higgins CF & Wilkinson AJ (1994) The structural basis of sequence-independent peptide binding by OppA protein. Science 264: 1578–1581

    Google Scholar 

  • Tan PST, Chapot-Chartier M-P, Pos KM, Rousseaud M, Boquien C-Y, Gripon J-C & Konings WN (1992b) Localization of peptidases in Lactococci. Appl. Environ. Microbiol. 58: 285–290

    Google Scholar 

  • Tan PST & Konings WN (1990) Purification and characterization of an aminopeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl. Environ. Microbiol. 56: 526–532

    Google Scholar 

  • Tan PST, Poolman B & Konings WN (1993a) Proteolytic enzymes of Lactococcus lactis. J. Dairy Res. 60: 269–286

    Google Scholar 

  • Tan PST, Pos KM & Konings WN (1991) Purification and characterization of an endopeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl. Environ. Microbiol. 57: 3593–3599

    Google Scholar 

  • Tan PST, Sasaki M, Bosman BW & Iwasaki T (1995) Purification and characterization of a dipeptidase from Lactobacillus helveticus SBT 2171. Appl. Environ. Microbiol. 61: 3430–3435

    Google Scholar 

  • Tan PST, Van Alen-Boerrigter IJ, Poolman B, Siezen RJ, De Vos WM & Konings WN (1992a) Characterization of the Lactococcus lactis pepN gene encoding an aminopeptidase homologous to mammalian aminopeptidase N. FEBS Lett. 306: 9–16

    Google Scholar 

  • Tan PST, Van Kessel TAJM, Van de Veerdonk FLM, Zuurendonk PF, Bruins AP & Konings WN (1993b) Degradation and debittering of a tryptic digest from β-casein by aminopeptidase N from Lactococus lactis subsp. cremoris Wg2. Appl. Environ. Microbiol. 59: 1430–1436

    Google Scholar 

  • Tynkkynen S, Buist G, Kunji E, Kok J, Poolman B, Venema G & Haandrikman AJ (1993) Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J. Bacteriol. 175: 7523–7532

    Google Scholar 

  • Van Alen-Boerrigter IJ, Baankreis R & De Vos WM (1991) Characterization and overexpression of the Lactococcus lactis pepN gene and localization of its product, aminopeptidase N. Appl. Environ. Microbiol. 57: 2555–2561

    Google Scholar 

  • Van Boven A, Tan PST & Konings WN (1988) Purification and characterization of a dipeptidase from Streptococcus cremoris Wg2. Appl. Environ. Microbiol. 54: 43–49

    Google Scholar 

  • Varmanen P, Ranthanen T & Palva A (1996a) Characterization of a novel ABC transporter-proline iminopeptidase operon from Lactobacillus helveticus. (Submitted)

  • Varmanen P, Steele JL & Palva A (1996b) Characterization of a prolinase gene and its product, and an adjacent ABC transporter gene from Lactobacillus helveticus. Microbiology (in press)

  • Varmanen P, Vesanto E, Steele JL & Palva A (1994) Characterization and expression of the pepN gene encoding a general aminopeptidase from Lactobacillus helveticus. FEMS Microbiol. Lett. 124: 315–320

    Google Scholar 

  • Vesanto E, Peltoniemi K, Purtsi T, Steele JL & Palva A (1996) Molecular characterization, overexpression and purification of a novel dipeptidase from Lactobacillus helveticus. Appl. Microbiol. Biotechnol. submitted

  • Vesanto E, Savijoki K, Rantanen T, Steele JL & Pavla A (1995a) An X-prolyl dipeptidyl iminopeptidase (pepX) gene from Lactobacillus helveticus. Microbiology 141: 3067–3075

    Google Scholar 

  • Vesanto E (1995b) Molecular characterization, heterologous expression and purification of an X-prolyl-dipeptidyl aminopeptidase gene from Lactobacillus helveticus. (Submitted)

  • Vesanto E, Varmanen P, Steele JL & Palva A (1994) Characterization and expression of the Lactobacillus helveticus pepC gene encoding a general aminopeptidase. Eur. J. Biochem. 224: 991–997

    Google Scholar 

  • Visser S, Exterkate FA, Slangen CJ & De Veer GJCM (1986) Comparative study of action of cell wall proteinases from various strains of Streptococcus cremoris on bovine α S1 -, β- and κ-casein. Appl. Environ. Microbiol. 52: 1162–1166

    Google Scholar 

  • Visser S, Robben AJPM & Slangen CJ (1991). Specificity of a cellenvelope located proteinase (P III -type) from Lactococcus lactis subsp. cremoris AM1 in its action on bovine β-casein. Appl. Microbiol. Biotechnology 35: 477–483

    Google Scholar 

  • Visser S, Slangen CJ, Exterkate FA & De Veer GJCM (1988) Action of a cell wall proteinase (P I ) from Streptococcus cremoris HP on bovine β-casein. Appl. Microbiol. Biotechnol. 29: 61–66

    Google Scholar 

  • Visser S, Slangen CJ, Robben AJPM, Van Dongen WD, Heerma W & Haverkamp J (1994) Action of a cell-envelope proteinase (CEP III -type) from Lactococcus lactis subsp. cremoris AM1 on bovine κ-casein. Appl. Microbiol. Biotechnol. 41: 644–651

    Google Scholar 

  • Vongerichten KF, Klein JR, Matern H & Plapp R (1994) Cloning and nucleotide sequence analysis of pepV, a carnosinase gene from Lactobacillus delbrückii subsp. lactis DSM7290, and partial characterisation of the enzyme. Microbiol. 140: 2591–2600

    Google Scholar 

  • Vongerichten KF & Krũger E. Unpublished results

  • Von Heijne G (1989) The structure of signal peptides from bacterial lipoproteins. Protein Engineer. 2: 531–534

    Google Scholar 

  • Vos P, Boerrigter IJ, Buist G, Haandrikman AJ, Nijhuis M, De Reuver MB, Siezen RJ, Venema G, De Vos W & Kok J (1991) Engineering of the Lactococcus lactis serine proteinase by construction of hybrid enzymes. Protein Engineer. 4: 479–484

    Google Scholar 

  • Vos P, Simons G, Siezen RJ & De Vos WM (1989a) Primary structure and organization of the gene for a prokaryotic cell envelopelocated serine proteinase. J. Biol. Chem. 264: 14579–13585

    Google Scholar 

  • Vos P, Van Asseldonk M, Van Jeveren F, Siezen R, Simons G & De Vos WM (1989b) A maturation protein is essential for the production of active forms of Lactococcus lactis SK11 serine proteinase located in or secreted from the cell. J. Bacteriol. 171: 2795–2802

    Google Scholar 

  • Wohlrab Y & Bockelman W (1992) Purification and characterization of a dipeptidase from Lactobacillus delbrückii subsp. bulgaricus. Int. Dairy J. 2: 345–361

    Google Scholar 

  • (1993) Purification and characterization of a second aminopeptidase (PepC-like) from Lactobacillus delbrückii subsp. bulgaricus B14. Int. Dairy J. 3: 685–701

    Google Scholar 

  • (1994) Purification and characterization of a new aminopeptidase from Lactobacillus delbrückii subsp. bulgaricus B14. Int. Dairy J. 4: 409–427

    Google Scholar 

  • Yamamoto N, Akino A & Takano T (1993) Purification and specificity of a cell-wall-associated proteinase from Lactobacillus helveticus CP790. J. Biochem. 114: 740–745

    Google Scholar 

  • Yan T-R, Ho S-C & Hou C-L (1992) Catalytic properties of X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis subsp. cremoris nTR. Biosci. Biotech. Biochem. 56: 704–707

    Google Scholar 

  • Yüksel, GÜ & Steele JL (1995) DNA sequence analysis, expression, distribution, and physiological role of the X-prolyl dipeptidyl aminopeptidase (PepX) gene from Lactobacillus helveticus CNRZ 32. (Submitted)

  • Zevaco C, Monnet V & Gripon J-C (1990) Intracellular X-prolyl dipeptidyl peptidase from Lactococcus lactis subsp. lactis: purification and properties. J. Appl. Bacteriol. 68: 357–366

    Google Scholar 

  • Zevaco C & Gripon J-C (1988) Properties and specificity of a cellwall proteinase from Lactobacillus helveticus. Le Lait 68: 393–408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunji, E.R.S., Mierau, I., Hagting, A. et al. The proteotytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70, 187–221 (1996). https://doi.org/10.1007/BF00395933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00395933

Key words

Navigation