Marine Biology

, Volume 54, Issue 3, pp 225–237 | Cite as

A meiofaunal “thiobios” limited to the anaerobic sulfide system of marine sand does not exist

  • K. Reise
  • P. Ax


The spatial relationship of interstitial metazoans to sources of oxygen has been studied on a tidal flat in the Wadden Sea near Sylt (eastern part of the North Sea). Consistently, meiofauna remains in close proximity to oxygenated layers or pocket areas within the sediment. This is exemplified by the pattern of meiofaunal abundance and species composition alongside oxic burrows of the lugworm Arenicola marina L. A specific meiofauna confined to oxygen-deficient horizons of the sediment does not exist.


Oxygen Sulfide Species Composition Spatial Relationship Tidal Flat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aller, R.C. and J.Y. Yingst: Biogeochemistry of tube-dwelling: a study of the sedentary polychaete Amphitrite ornata (Leidy). J. mar. Res. 36, 201–254 (1978)Google Scholar
  2. Ax, P. and R. Ax: Das Verteilungsprinzip des subterranen Psammon am Übergang Meer-Süßwasser. Mikrofauna Meeresbod. 1, 1–51 (1970)Google Scholar
  3. Bacescu, M.: Contribution a la biocoenologie de la Mer Noire. L'étage périazoique et le faciès dreissenifère. Leurs caractéristiques. Rapp. p.-v. Réun. Commn int. Explor. scient. Mer Méditerr. 17, 107–122 (1963)Google Scholar
  4. Boaden, P.J.S.: Anaerobiosis, meiofauna and early metazoan evolution. Zoologica Scr. 4, 21–24 (1975)Google Scholar
  5. —: Thiobiotic facts and fancies (aspects of the distribution and evolution of anaerobic meiofauna). Mikrofauna Meeresbod. 61, 45–63 (1977)Google Scholar
  6. — and H.M. Platt: Daily migration patterns in an intertidal meiobenthic community. Thalassia jugosl. 7, 1–12 (1971)Google Scholar
  7. Brafield, A.E.: The oxygen content of interstitial water in sandy shores. J. Anim. Ecol. 33, 97–116 (1964)Google Scholar
  8. Cadée, G.C.: Sediment reworking of Arenicola marina on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res. 10, 440–460 (1976)Google Scholar
  9. Clemmey, H.: World's oldest animal traces. Nature, Lond. 261, 576–578 (1976)Google Scholar
  10. Crezée, M.: Solenofilomorphidae (Acoela), major component of a new turbellarian association in the sulfide system. Int. Revue ges. Hydrobiol. 61, 105–129 (1976)Google Scholar
  11. Ehlers, U.: Zur Populationstruktur interstitieller Typhloplanoida und Dalyellioida (Turbellaria, Neorhabdocoela). Mikrofauna Meeresbod. 19, 1–105 (1973)Google Scholar
  12. Elmgren, R.: Benthic meiofauna as indicator of oxygen conditions in the northern Baltic proper. Merentutkimuslait. Julk. (Havsforsk-Inst. Skr., Helsingf.) 239, 265–271 (1975)Google Scholar
  13. Faubel, A.: Populationsdynamik und Lebenszyklen interstitieller Acoela und Macrostomida (Turbellaria). Mikrofauna Meeresbod. 56, 1–107 (1976)Google Scholar
  14. Fenchel, T.M. and R.J. Riedl: The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7, 255–268 (1970)Google Scholar
  15. Goldhaber, M.B. and I.R. Kaplan: The sulfur cycle. In: The sea, Vol. 5. pp 569–655. Ed. by E.D. Goldberg. New York: Wiley-Interscience 1974Google Scholar
  16. Hartwig, E.: Die Ciliaten des Gezeiten-Sandstrandes der Nordseeinsel Sylt. II. Ökologie. Mikrofauna. Meeresbod. 21, 3–171 (1973)Google Scholar
  17. Hoxhold, S.: Zur Populationsstruktur und Abundanzdynamik interstitieller Kalytorhynchia (Turbellaria, Neorhabdocoela). Mikrofauna Meeresbod. 41, 1–134 (1974)Google Scholar
  18. Hylleberg, J.: Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia 14, 113–137 (1975)Google Scholar
  19. Jansson, B.-O.: Quantitative and experimental studies of the interstitial fauna in four Swedish sandy beaches. Ophelia 5, 1–71 (1968)Google Scholar
  20. Johnson, R.G.: Vertical variation in particulate matter in the upper twenty centimeters of marine sediments. J. mar. Res. 35, 273–282 (1977)Google Scholar
  21. Lasserre, P. and J. Renaud-Mornant: Resistance and respiratory physiology of intertidal meiofauna to oxygen-deficiency. Neth. J. Sea Res. 7, 290–302 (1973)Google Scholar
  22. Little-Gadow, S.: Sedimente und Chemismus. In: Das Watt, pp 51–62. Ed. by H.-E. Reineck. Frankfurt-Main: Waldemar Kramer 1978Google Scholar
  23. McLachlan, A.: A quantitative analysis of the meiofauna and the chemistry of the redox potential discontinuity zone in a sheltered sandy beach. Estuar. cstl mar. Sci. 7, 275–290 (1978)Google Scholar
  24. Maguire, C. and P.J.S. Boaden: Energy and evolution in the thiobios. An extrapolation from the marine gastrotrich Thiodasys sterrei. Cah. Biol. mar. 16, 635–646 (1975)Google Scholar
  25. Meineke, T. und W. Westheide: Gezeitenabhängige Wanderungen der Interstitialfauna in einem Sandstrand der Insel Sylt (Nordsee). Mikrofauna Meeresbod. 75, 1–36 (1979)Google Scholar
  26. Mielke, W.: Ökologie der Copepoda eines Sand-strandes der Nordseeinsel Sylt. Mikrofauna Meeresbod. 59, 1–86 (1976)Google Scholar
  27. Müller, U. und P. Ax: Gnathostomulida von der Nordseeinsel Sylt mit Beobachtungen zur Lebensweise und Entwicklung von Gnathostomula paradoxa Ax. Mikrofauna Meeresbod. 9, 1–41 (1971)Google Scholar
  28. Ott, J.: Determination of fauna boundaries of nematodes in an intertidal sand flat. Int. Revue ges. Hydrobiol. 57, 645–663 (1972)Google Scholar
  29. — and R. Machan: Dynamics of climatic parameters in intertidal sediments. Thalassia jugols. 7, 219–229 (1971)Google Scholar
  30. — and F. Schiemer: Respiration and anaerobiosis of free living nematodes from marine and limnic sediments. Neth. J. Sea Res. 7, 233–243 (1973)Google Scholar
  31. Pawlak, R.: Zur Systematik und Ökologie (Lebenszyklen, Populationsdynamik) der Turbellarien-Gattung Paromalostomum. Helgoländer wiss. Meeresunters. 19, 417–454 (1969)Google Scholar
  32. Platt, H.M.: Vertical and horizontal distribution of free-living marine nematodes from Strangford Lough, Northern Ireland. Cah. Biol. mar. 18, 261–273 (1977)Google Scholar
  33. Reise, K.: Experiments on epibenthic predation in the Wadden Sea. Helgoländer wiss. Meeresunters. 31, 55–101 (1978)Google Scholar
  34. Salvini-Plawen, V.L.: On the origin and evolution of the lower Metazoa. Z. zool. Syst. EvolForsch. 16, 40–88 (1978)Google Scholar
  35. Schiemer, F.: Respiration rates of two species of Gnathostomulida. Oecologia (Berl.) 13, 403–406 (1973)Google Scholar
  36. Smidt, E.: Animal production in the Danish Waddensea. Meddr Kommn Danm. Fisk.-og Havunders. (Ser. Fiskeri) 11, 1–151 (1951)Google Scholar
  37. Sopott, B.: Jahreszeitliche Vereilung und Lebenszyklen der Proseriata (Turbellaria) eines Sandstrandes der Nordseeinsel Sylt. Mikrofauna Meeresbod. 15, 1–106 (1973)Google Scholar
  38. Teal, J.M. and W. Wieser: The distribution and ecology of nematodes in a Georgia salt marsh. Limnol. Oceanogr. 11, 217–222 (1966)Google Scholar
  39. Towe, K.M.: Early Precambrian oxygen: a case against photosynthesis. Nature, Lond. 274, 657–661 (1978)Google Scholar
  40. Westheide, W.: Zur quantitativen Verteilung von Bakterien und Hefen in einem Gezeitenstrand der Nordseeküste. Mar. Biol. 1, 336–347 (1968)Google Scholar
  41. Wieser, W. and J. Kanwisher: Ecological and physiological studies on marine nematodes from a small salt marsh near Woods Hole, Massachusetts. Limnol. Oceanogr. 6, 262–270 (1961)Google Scholar
  42. —, J. Ott, E. Schiemer and E. Gnaiger: An ecophysiological study of some meiofauna species inhabiting a sandy beach at Bermuda. Mar. Biol. 26, 235–248 (1974)Google Scholar
  43. Wohlenberg, E.: Die Wattenmeer-Lebensgemeinschaften im Königshafen von Sylt. Helgoländer wiss. Meeresunters. 1, 1–92 (1937)Google Scholar
  44. Zebe, E.: In vivo-Untersuchungen über den Glucose-Abbau bei Arenicola marina (Annelida, Polychaeta). J. comp. Physiol. 101, 133–145 (1975)Google Scholar
  45. Zobell, C.E. and C.B. Feltham: The bacterial flora of a marine mud flat as an ecological factor. Ecology 23, 69–77 (1942)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • K. Reise
    • 1
  • P. Ax
    • 1
  1. 1.II. Zoologisches Institut der Universität GöttingenGöttingenGermany

Personalised recommendations