Skip to main content
Log in

Biochemical characterization of the molybdenum cofactor mutants of Neurospora crassa: in vivo and in vitro reconstitution of NADPH-nitrate reductase activity

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Molybdenum cofactor (MoCo) mutants of Neurospora crassa lack both NADPH-nitrate reductase and xanthine dehydrogenase activity. In vivo and in vitro studies to further characterize these mutants are now reported. The MoCo mutants nit-9A and nit-9B are capable of growing, albeit poorly, with nitrate as the sole nitrogen source, provided high levels of molybdate are present. The MoCo mutants nit-9A, nit-9B and nit-9C, but not nit-1, nit-7 or nit-8, have significant levels of NADPH-nitrate reductase when grown in nitrate medium containing 30 mM molybdate. In vitro reconstitution experiments using cell free extracts of the N. crassa MoCo mutants and E. coli HB101 as a source of wild-type MoCo were performed. MoCo from E. coli was capable of reconstituting NADPH-nitrate reductase activity to nit-1, nit-7 and nit-8. Molybdate is required for the in vitro reconstitution of NADPH-nitrate reductase activity. It was not possible to in vitro reconstitute NADPH-nitrate reductase activity in the MoCo mutants nit-9A, nit-9B or nit-9C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amy NK (1980) J Bacteriol 148:274–282

    Google Scholar 

  • Amy NK, Garrett KH (1979) Anal Biochem 95:97–107

    Google Scholar 

  • Amy NK, Rajagopalan KV (1979) J Bacteriol 140:114–124

    Google Scholar 

  • Arst HN Jr, MacDonald DW, Cove DJ (1970) Mol Gen Genet 108:129–145

    Google Scholar 

  • Arst HN Jr, Tollervey DW, Sealy-Lewis H (1981) J Gen Microbiol 128:1083–1093

    Google Scholar 

  • Birkett JA, Rowlands RT (1981) J Gen Microbiol 123:281–285

    Google Scholar 

  • Braaksma FJ (1982) PhD Thesis, University of Groningon, Haven, The Netherlands

  • Braaksma FJ, Feenstra WJ (1982) Physiol Plant 54:351–360

    Google Scholar 

  • Brownlee GA, Arst HN Jr (1983) J Bacteriol 155:1138–1146

    Google Scholar 

  • Buchanan RJ, Wray JL (1983) Mol Gen Genet 188:228–230

    Google Scholar 

  • Coddington A (1976) Mol Gen Genet 145:195–206

    Google Scholar 

  • Cove DJ (1966) Biochem Biophys Acta 113:51–56

    Google Scholar 

  • Cove DJ (1976a) Heredity 36:191–203

    Google Scholar 

  • Cove DJ (1976b) Mol Gen Genet 146:147–159

    Google Scholar 

  • Cove DJ (1979) Biol Rev 54:291–327

    Google Scholar 

  • Davis RH, DeSerres FJ (1970) In: Tabor H, Tabor CW (eds) Methods in Enzymology, vol 17A. Academic Press Inc, New York, pp 79–143

    Google Scholar 

  • Dunn-Coleman NS (1984) Current Genetics 8:589–595

    Google Scholar 

  • Dunn-Coleman NS, Garrett RH (1980) Gen Genet 179:25–32

    Google Scholar 

  • Garrett RH, Cove DJ (1976) Mol Gen Genet 149:179–186

    Google Scholar 

  • Garrett RH, Nason A (1967) Proc Natl Acad Sci USA 58:1603–1610

    Google Scholar 

  • Garrett RH, Nason A (1969) J Biol Chem 244:2870–2882

    Google Scholar 

  • Gebhardt C, Funkhauser H, King PJ (1982) In: Fujiwara (ed) Plant Tissue Culture 1982, pp 463–464

  • Grove G, Marzluf GA (1981) J Biol Chem 256:463–470

    Google Scholar 

  • Homer RD (1983) Biochim Biophys Acta 744:7–15

    Google Scholar 

  • Johnson JL, Hainline DE, Rajagopalan KV (1980) J Biol Chem 255:1783–1786

    Google Scholar 

  • Ketchum PA, Cambier HY, Frazier WA III, Madonsky CH, Nason A (1970) Proc Natl Acad Sci USA 66:1016–1123

    Google Scholar 

  • Kinghorn JR, Pateman JA (1977) In: Smith JE, Pateman JA (eds) Genetics and physiology of Aspergillus. Academic Press, London, pp 147–202

    Google Scholar 

  • Lowry OH, Rosebrough JJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    Google Scholar 

  • MacDonald DW, Cove DJ (1976) Eur J Biochem 47:107–110

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) In: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Publications, USA, pp 55–71

    Google Scholar 

  • Marton L, Dung TM, Mendel RR, Maliga P (1982) Mol Gen Genet 186:301–304

    Google Scholar 

  • Mendel RR, Müller AJ (1980) Plant Sci Lett 18:277–288

    Google Scholar 

  • Mendel RR, Alikulov ZA, Lvov NP, Müller JJ (1981) Mol Gen Genet 181:395–399

    Google Scholar 

  • Mendel RR, Alikulov ZA, Müller AJ (1982a) Plant Sci Lett 25: 67–72

    Google Scholar 

  • Mendel RR, Alikulov ZA, Müller AJ (1982b) Plant Sci Lett 27:95–101

    Google Scholar 

  • Nason A, Evans HJ (1953) J Biol Chem 202:655–673

    Google Scholar 

  • Nason A, Antoine AD, Ketchum PA, Frazier WA, Lee DK (1970) Proc Natl Acad Sci USA 65:133–144

    Google Scholar 

  • Nason A, Lee KY, Pan SS, Ketchum PA, Lambert A, DeVries J (1971) Proc Natl Acad Sci USA 68:3242–3246

    Google Scholar 

  • Pateman RA, Kinghorn JR (1977) In: Smith JE, Pateman JA (eds) Genetics and physiology of Aspergillus. Academic Press, London, pp 203–241

    Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LA, MacDonald KD, Bufton AWJ (1955) Adv Genet 5:141–258

    Google Scholar 

  • Queshi JA, Buchanan RJ, Wray JL (1982) Proc Int Symp on Nitrate Assimilation, Gatersleben GDR (Abstract), p 22

  • Sperl GT, DeMoss JA (1975) J Bacteriol 122:1230–1238

    Google Scholar 

  • Tomsett AB, Cove DJ (1979) Genet Res Camb 34:19–32

    Google Scholar 

  • Tomsett AB, Garrett RH (1980) Genetics 95:649–660

    Google Scholar 

  • Tomsett AB, Garrett RH (1981) Mol Gen Genet 184:183–190

    Google Scholar 

  • Vapnek D, Hautala JA, Jacobson JW, Giles NH, Kushner SR (1977) Proc Natl Acad Sci USA 74:3508–3512

    Google Scholar 

  • Vega JM, Greenbaum P, Garrett RH (1975) Biochem Biophys Acta 377:251–257

    Google Scholar 

  • Xuan LT, Grafe R, Müller AJ (1983) 6th Int Protoplast Symp, Basel, Switzerland, Abstract

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn-Coleman, N.S. Biochemical characterization of the molybdenum cofactor mutants of Neurospora crassa: in vivo and in vitro reconstitution of NADPH-nitrate reductase activity. Curr Genet 8, 581–588 (1984). https://doi.org/10.1007/BF00395703

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00395703

Key words

Navigation