Marine Biology

, Volume 47, Issue 2, pp 115–123 | Cite as

Compositional topography of melon and spermaceti organ lipids in the pygmy sperm whale Kogia breviceps: Implications for echolocation

  • R. Karol
  • C. Litchfield
  • D. K. Caldwell
  • M. C. Caldwell


The forehead of the pygmy sperm whale Kogia breviceps contains a large “melon” of fatty tissue in front of a small, fat-filled, cornucopia-shaped spermaceti organ. This unique anatomical structure may possibly play an acoustical role in the whale's echolocation system, similar to the fatty “melon” sound lens postulated for dolphins. To better understand its function, we have studied the compositional topography of the K. breviceps melon and spermaceti organ lipids. The fatty head tissues of an adult K. breviceps were serially sectioned into 9 transverse slices. Appropriate tissue samples were cut from every other slice, and analyzed for % lipid and lipid class composition. Wax esters and triglycerides were the only major lipids present; their average carbon number in each sample was determined by gas-liquid chromatography (GLC). Our topographical analyses of K. breviceps melon indicate 3 regions of distinctive lipid composition: a fat-poor melon exterior, an “outer melon” of medium fat content having % triglyceride>% wax ester, and a fat-rich “inner melon” having % wax ester>% triclyceride. The spermaceti organ contains a fat-rich core of very high wax-ester content (84 to 99%), surrounded by a fat-poor case. Average carbon numbers of both wax esters and triglycerides were lowest in the inner melon and the spermaceti organ. At the rear of the spermaceti organ lies the “museau de singe”, an apparent sound generator. The lipid topography data plus anatomical and acoustical considerations suggest that the K. breviceps melon/spermaceti organ system may function as an acoustical transducer, directing and refracting sound waves from this source for the purpose of echolocation.


Triglyceride Melon Lipid Class Class Composition Topographical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Au, W.W.L., R.W. Floyd and J.E. Haun: Propagation of dolphin echolocation signals. J. acoust. Soc. Am. 60, p. S6 (1976)Google Scholar
  2. Backhouse, K.M.: The nasal apparatus of the pigmy sperm whale (Kogia breviceps). J. Anat. 113, p. 275 (1972)Google Scholar
  3. Blomberg, J. and L.-E. Lindholm: Variations in lipid composition and sound velocity in melon from the north Atlantic pilot whale, Globicephala melaena melaena. Lipids 11, 153–156 (1976)Google Scholar
  4. Bligh, E.G. and W.J. Dyer: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)Google Scholar
  5. Bullock, T.H., A.D. Grinnell E. Ikezona, K. Kameda, Y. Katsuki, M. Nomoto, O. Sato, N. Suga and K. Yanagisawa: Electrophysiological studies of central auditory mechanisms in cetaceans. Z. vergl. Physiol. 59, 117–156 (1968)Google Scholar
  6. Busnel, R.-G. et A. Dziedzic: Résultats métrologiques expérimentaux de l'écholocation chez le Phocoena phocoena et leur comparaison avec ceux de certaines chauves-souris. In: Animal sonar systems, biology and bionics, pp 307–335. Ed. by R.-G. Busnel. Jouy-en-Josas, France: Laboratoire de Physiologie Acoustique 1966Google Scholar
  7. Caldwell, D.K., J.H. Prescott and M.C. Caldwell: Production of pulsed sounds by the pigmy sperm whale, Kogia breviceps. Bull. Sth. Calif. Acad. Sci. 65, 245–248 (1966)Google Scholar
  8. Del Grosso, V.A.: Sound speed in pure water and sea water. J. acoust. Soc. Am. 47, 947–949 (1970)Google Scholar
  9. Evans, W.E.: Echolocation by marine delphinids and one species of fresh-water dolphin. J. acoust. Soc. Am. 54, 191–199 (1973)Google Scholar
  10. Gouw, T.H. and J.C. Vlugter: Physical properties of triglycerides. III. Ultrasonic sound velocity. Fette Seifen AnstrMittel 69, 159–163 (1967)Google Scholar
  11. Hustad, G.O., T. Richardson, W.C. Winder and M. P. Dean: Acoustic properties of some lipids. Chem. Phys. Lipids 7, 61–74 (1971)Google Scholar
  12. Lilly, J.C.: Man and dolphin, 312 pp. Garden City: Doubleday 1961Google Scholar
  13. Litchfield, C. and A.J. Greenberg: Comparative lipid patterns in the melon fats of dolphins, porpoises and toothed whales. Comp. Biochem. Physiol. 47B, 401–407 (1974)Google Scholar
  14. —, R.D. Harlow and R. Reiser: Quantitative gasliquid chromatography of triglycerides. J. Am. Oil Chem. Soc. 42, 849–857 (1965)Google Scholar
  15. —, R. Karol and A.J. Greenberg: Compositional topography of melon lipids in the Atlantic bottlenosed dolphin Tursiops truncatus: implications for echo-location. Mar. Biol. 23, 165–169 (1973)Google Scholar
  16. Morris, R.J.: The lipid structure of the spermaceti organ of the sperm whale (Physeter catodon). Deep-Sea Res. 20, 911–916 (1973)Google Scholar
  17. — Further studies into the lipid structure of the spermaceti organ of the sperm whale (Physeter catodon). Deep-Sea Res. 22, 483–489 (1975)Google Scholar
  18. Norris, K.S.: Some problems of echolocation in cetaceans. In: Marine bio-acoustics, Vol. 1. p. 329. Ed. by W.N. Tavolga. New York: Pergamon Press 1964Google Scholar
  19. — The evolution of acoustic mechanisms in odontocete cetaceans. In: Evolution and environment, pp 297–324. Ed. by E.T. Drake. New Haven: Yale University Press 1968Google Scholar
  20. — The echolocation of marine mammals. In: The biology of marine mammals, pp 391–423. Ed. by H.T. Andersen. New York: Academic Press 1969Google Scholar
  21. — Cetacean biosonar. Part I. Anatomical and behavioral studies. Biochem. biophys. Perspect. mar. Biol. 2, 215–236 (1975)Google Scholar
  22. — and W.E. Evans: Directionality of echolocation clicks in the rough-tooth porpoise, Steno bredanensis (Lesson). In: Marine bioacoustics. Vol. 2. pp 305–316. Ed. by W.N. Tavolga. New York: Pergamon Press 1967Google Scholar
  23. — and G.W. Harvey: A theory for the function of the spermaceti organ of the sperm whale (Physeter catodon L.). In: Animal orientation and navigation, pp 397–417. Ed. by S.R. Galler, K. Schmidt-Koenig, G.J. Jacobs and R.E. Belleville. Washington, D.C.: National Aeronautics and Space Administration 1972Google Scholar
  24. —— Sound transmission in the porpoise head. J. acoust. Soc. Am. 56, 659–664 (1974)Google Scholar
  25. —, J.H. Prescott, P.V. Asa-Dorian and P. Perkins: An experimental demonstration of echolocation behavior in the porpoise, Tursiops truncatus (Montagu). Biol. Bull. mar. biol. Lab., Woods Hole 120, 163–176 (1961)Google Scholar
  26. Penner, R.H. and A.E. Murchison: Experimentally demonstrated echolocation in the Amazon River porpoise, Inia geoffrensis (Blainville), 30 pp. San Diego: Naval Undersea Research and Development Center 1970. (Publication No. NUC TP 187 Rev. 1)Google Scholar
  27. Schenkkan, E.J. and P.E. Purves: The comparative anatomy of the nasal tract and the function of the spermaceti organ in the Physeteridae (Mammalia, Odontoceti). Bijdr. Dierk. 43, 93–112 (1973)Google Scholar
  28. Turner, R.N. and K.S. Norris: Discriminative echolocation in a porpoise. J. exp. Analysis Behav. 9, 535–544 (1966)Google Scholar
  29. Varanasi, U., R.E. Apfel and D.C. Malins: A novel microtechnique for the measurement of acoustic properties of lipids. Chem. Phys. Lipids 19, 179–184 (1977)Google Scholar
  30. —, M. Everitt and D.C. Malins: The isomeric composition of diisovaleroyl-glycerides: a specificity for the biosynthesis of the 1,3-diisovaleroyl structures. Int. J. Biochem. 4, 373–378 (1973)Google Scholar
  31. —, H.R. Feldman and D.C. Malins: Molecular basis for formation of lipid sound lens in echolocating cetaceans. Nature, Lond. 255, 340–343 (1975)Google Scholar
  32. Wood, F.G.: Discussion. In: Marine bio-acoustics, Vol. 1, p. 395. Ed. by W.N. Tavolga. New York: Pergamon Press 1964Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • R. Karol
    • 1
  • C. Litchfield
    • 1
  • D. K. Caldwell
    • 2
  • M. C. Caldwell
    • 2
  1. 1.Department of BiochemistryRutgers UniversityNew BrunswickUSA
  2. 2.Biocommunication and Marine Mammal Research Facility of the State University System of Florida Institute for Advanced Study of the Communication ProcessesSt. AugustineUSA

Personalised recommendations