Skip to main content
Log in

Morphological and chemical studies on the crystalloid-forming ‘succulent protein’ from normal and ribosome-deficient Aeonium domesticum plastids

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Aeonium domesticum cv. variegatum is a mesochimera of the constitution green/white/green with normal proplastids and chloroplasts in the unaffected tissues and ribosome-deficient colourless mutant plastids in the white leaf tissues. All the different plastid types contain ‘succulent protein crystalloids’ (SPC). For more detailed characterization, the SPC elements were freed from the plastids and purified by gel filtration. Electron microscopy of different fractions revealed five levels of structural organization. Beginning with the most complex state, the levels are designated as ‘succulent protein (SP) organizational state’ V (hexagonally arranged and closely packed tubules in the stroma of intact plastids) to I (globular protomers of 5 nm diameter as the basic structure of SPCs). Highly purified SP-fractions were shown by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to consist of two or three proteins of Mr 56 kdalton, 58 kdalton and 60 kdalton, depending on the buffer medium used for SP isolation and the duration of storage of leaves in the frozen state. In the urea/SDS-PAGE system, these proteins show similar mobilities to α- and β-tubulin, but no immunoreaction against antitubulin. The proteolytic cleavage pattern of tubulin subunits and SP proteins are different. Their locations on two-dimensional isoelectric focusing-SDS gels show some overlappings because of microheterogeneities in both proteins in the pH gradient from pH 4.5 to 6.5. Malatedehydrogenase activity could not be detected in the purified SP fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAM:

Crassulacean acid metabolism

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SP:

succulent protein

SPC:

succulent protein crystalloid

SPOS:

succulent protein organizational state

References

  • Atès, Y., Sentein, P. (1983) Action of vincaleukoblastine on the mitotic apparatus of Triturus helveticus blastulae and disappearance of paracrystals by quinoline. Biol. Cell. 47, 179–186

    Google Scholar 

  • Bell, P.R. (1982) Tubular elements in plastids in the female gamete of a fern, Pteris ensiformis. Eur. J. Cell Biol. 26, 303–305

    Google Scholar 

  • Brandão, J., Salema, R. (1974) Microtubules in chloroplasts of a higher plant (Sedum sp.). J. Submicrosc. Cytol. 6, 381–390

    Google Scholar 

  • Bürk, R.R., Eschenbruch, M., Leuthard, P., Steck, G. (1983) Sensitive detection of proteins and peptides in polyacrylamide gels after formaldehyde fixation. Methods Enzymol. 91, 247–254

    Google Scholar 

  • Chua, N.-H. (1980) Electrophoretic analysis of chloroplast proteins. Methods Enzymol. 69, 434–446

    Google Scholar 

  • Cleveland, D.W., Fischer, S.G., Kirschner, M.W., Laemmli, U.K. (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252, 1102–1106

    Google Scholar 

  • Domozych, D.S., Rogers, C.E., Mattox, K.R., Stewart, K.D. (1983) Colchicine-induced effects in the scaly green algae, Mesostigma viride: Loss of microtubules and paracrystal formation. J. Exp. Bot. 34, 1080–1088

    Google Scholar 

  • Gunning, B.E.S. (1965) The fine structure of chloroplast stroma following aldehyde osmium-tetroxide fixation. J. Cell. Biol. 24, 79–93

    Google Scholar 

  • Herbert, M., Burkhard, Ch., Schnarrenberger, C. (1978) Cell organelles from crassulacean-acid-metabolism (CAM) plants. I. Enzymes in isolated peroxisomes. Planta 143, 279–284

    Google Scholar 

  • Johnson, H.S., Hatch, M.D. (1970) Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and ‘malic’ enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis. Biochem. J. 118, 273–280

    Google Scholar 

  • Kluge, M., Knapp, J., Kramer, D., Schwerdtner, J., Ritter, H. (1979) Crassulacean acid metabolism (CAM) in leaves of Aloe arborescens Mill. Comparative studies of the carbon metabolism of chlorenchym and central hydrenchym. Planta 145, 357–363

    Google Scholar 

  • Kluge, M., Osmond, C.B. (1972) Studies on phosphoenolpyruvate carboxylase and other enzymes of crassulacean acid metabolism of Bryophyllum tubiflorum and Sedum prealtum. Z. Pflanzenphysiol. 66, 97–105

    Google Scholar 

  • Knoth, R. (1982) Protein crystalloids in ribosome-deficient plastids of Aeonium domesticum cv. variegatum (Crassulaceae). Planta 156, 528–535

    Google Scholar 

  • Lee, R.E., Thompson, A. (1973) The stromacentre of plastids of Kalanchoe pinnata Persoon. J. Ultrastruct. Res. 42, 451–456

    Google Scholar 

  • Mandelkow, E., Mandelkow, E.-M., Bordas, J. (1983) Structure of tubulin rings studied by X-ray scattering using synchrotron radiation. J. Mol. Biol. 167, 179–196

    Google Scholar 

  • Markham, R., Frey, S., Hills, G.J. (1963) Methods for the enhancement of image detail and accentuation of structure in electron microscopy. Virology 20, 88–102

    Google Scholar 

  • O'Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021

    Google Scholar 

  • Oleson, P. (1978) Structure of chloroplast membranes as revealed by natural and experimental fixation with tannic acid — particles in and on the thylakoid membrane. Biochem. Physiol. Pflanz. 172, 319–342

    Google Scholar 

  • Parthier, B. (1982) The cooperation of nuclear and plastid genomes in plastid biogenesis and differentiation. Biochem. Physiol. Pflanz. 177, 283–317

    Google Scholar 

  • Pickett-Heaps, J.D. (1968) Microtubule-like structure in the growing plastids or chloroplasts of two algae. Planta 81, 193–200

    Google Scholar 

  • Sabnis, D.D., Hart, J.W. (1982) Microtubule proteins and P-proteins. In: Encyclopedia of plant physiology, vol. 14 A: Nucleic acids and proteins in plants I, pp. 401–437, Boulter, D., Parthier, B., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Salema, R., Brandão, I. (1978) Development of microtubules in chloroplasts of two halophytes forced to follow crassulacean acid metabolism. J. Ultrastruct. Res. 62, 132–136

    Google Scholar 

  • Santos, I., Salema, R. (1980) Cytochemical localization of malic dehydrogenase in chloroplasts of Sedum telephium. Electron Microsc. 2, 246–247

    Google Scholar 

  • Sengbusch, P.v. (1979) Molekular- und Zellbiologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sitte, P., Falk, H., Liedvogel, B. (1980) Chromoplasts. In: Pigments in plants, pp. 117–148, Czygan, F.C., ed. Fischer, Stuttgart New York

    Google Scholar 

  • Sprey, B. (1975) Membranassoziierte Tubuli während der Chloroplastengenese von Hordeum vulgare L. Protoplasma 84, 197–203

    Google Scholar 

  • Teeri, J.A., Overton, J. (1981) Chloroplast ultrastructure in two crassulacean species and an F1 hybrid with differing biomass δ13C values. Plant Cell Environ. 4, 427–431

    Google Scholar 

  • Thompson, A., Vogel, J., Lee, R.E. (1977) Carbon dioxide uptake in relation to a plastid inclusion body in the succulent Kalanchoe pinnata Persoon. J. Exp. Bot. 28, 1037–1041

    Google Scholar 

  • Vaughn, K.C., Wilson, K.G. (1981) Improved visualization of plastid fine structure: plastid microtubules. Protoplasma 108, 21–27

    Google Scholar 

  • Wick, S.M., Seagull, R.W., Osborn, M., Weber, K., Gunning, B.E.S. (1981) Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells. J. Cell Biol. 89, 685–690

    Google Scholar 

  • Wrischer, M. (1973) Ultrastructural changes in isolated plastids I. Etioplasts. Protoplasma 78, 291–301

    Google Scholar 

  • Yadav, N.S., Filner, P. (1983) Tubulin from cultured tobacco cells: isolation and identification based on similarities to brain tubulin. Planta 157, 46–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoth, R., Klein, P. & Hansmann, P. Morphological and chemical studies on the crystalloid-forming ‘succulent protein’ from normal and ribosome-deficient Aeonium domesticum plastids. Planta 161, 105–112 (1984). https://doi.org/10.1007/BF00395469

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00395469

Key words

Navigation