The common jellyfish Aurelia aurita: standing stock, excretion and nutrient regeneration in the Kiel Bight, Western Baltic

Abstract

The population dynamics, ammonia and inorganic phosphate excretion, and nutrient regeneration of the common jellyfish Aurelia aurita was investigated from 1982 to 1984 in the Kiel Bight, western Baltic Sea. During summer 1982, medusae abundance ranged between 14 and 23 individuals 100 m-3, biomass was estimated at about 5 g C 100 m-3 and the mean final diameter of individuals was 22 cm. Abundance, based on numbers, in 1983 and 1984 was an order of magnitude lower; biomass was less than 2 g C 100 m-3 and jellyfish grew to 30 cm. During the summers of 1983 and 1984, A. aurita biomass constituted roughly 40% of that of the total zooplankton>200 μm. In 1982, for which zooplankton data were lacking, it was assumed that medusae biomass was greater than that of all other zooplankton groups. Total ammonia excretion ranged between 6.5 and 36 μmol h-1 individual-1, whereas inorganic phosphate release was 1.4 to 5.7 μmol h-1 individual-1. Allometric equations were calculated and exponents of 0.93 for NH4−N release and 0.87 for PO4−P excretion were determined. Nitrogen and phosphorus turnover rates were 5.4 and 14.6% d-1, respectively. In 1982, the medusae population released 1 100 μmol NH4−N m-2 d-1, about 11% of the nitrogen requirements of the phytoplankton. The inorganic phosphate excretion (150 μmol m-2 d-1) sustained 23% of the nutrient demands of the primary producers. In the other two years the nutrient cycling of the medusae was much less important, and satisfied only 3 to 6% of the nutrient demands. It is suggested that in some years A. aurita is the second most important source of regenerated nutrients in Kiel Bight, next to sediment.

This is a preview of subscription content, access via your institution.

Literature cited

  1. Båmstedt, U. (1985). Seasonal excretion rates of macrozooplankton from the Swedish west coast. Limnol. Oceanogr. 30: 607–617

    Google Scholar 

  2. Biggs, D. C. (1977). Respiration and ammonium excretion by open ocean gelatinous zooplankton. Limnol. Oceanogr. 22: 108–117

    Google Scholar 

  3. Cronin, L. E., Daiber, C., Hulbert, E. M. (1962). Quantitative seasonal aspects of zooplankton in the Delaware River Estuary. Chesapeake Sci. 3: 63–93

    Google Scholar 

  4. David, H. A., Hartley, H. O., Pearson, E. S. (1954). The distribution of the ratio, in a single normal sample, of range to standard deviation. Biometrika 41: 482–493

    Google Scholar 

  5. Deason, E. E., Smayda, T. J. (1982). Ctenophore-zooplankton-phytoplankton interactions in Narragansett Bay, Rhode Island, USA, during 1972–1977. J. Plankton Res. 4: 203–217

    Google Scholar 

  6. Feigenbaum, D., Kelly, M. (1984). Changes in the lower Chesapeake Bay food chain in presence of the sea nettle Chrysaora quinquecirrha (Scyphomedusae). Mar. Ecol. Prog. Ser. 19: 39–47

    Google Scholar 

  7. Grasshoff, K. (1976). Methods of seawater analysis. Verlag Chemie, Weinheim

    Google Scholar 

  8. Hamner, W. M., Jenssen, R. M. (1974). Growth, degrowth, and irreversible cell differentiation in Aurelia aurita. Am. Zool. 14: 833–849

    Google Scholar 

  9. Herman, S. S., Mihursky, J. A., McErlean, A. J. (1968). Zooplankton and environmental characteristics of the Patuxent River Estuary 1963–1965. Chesapeake Sci. 9: 67–82

    Google Scholar 

  10. Hernroth, L., Gröndahl, F. (1985). On the biology of Aurelia aurita (L.) 3. Predation by Coryphella verrucosa (Gastropoda, Opisthobranchia), a major factor regulating the development of Aurelia populations in the Gullmar Fjord, Western Sweden. Ophelia 24: 37–45

    Google Scholar 

  11. Ikeda, T. (1974). Nutritional ecology of marine zooplankton. Mem. Fac. Fish. Hokkaido Univ. 22: 1–97

    Google Scholar 

  12. Ikeda, T. (1977). The effect of laboratory conditions on the extrapolation of experimental measurements to the ecology of marine zooplankton. IV. Changes in respiration and excretion rates of boreal zooplankton species maintained under fed and starved conditions. Mar. Biol. 41: 241–252

    Google Scholar 

  13. Ikeda, T. (1985). Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Mar. Biol. 85: 1–11

    Google Scholar 

  14. Ikeda, T., Bruce, B. (1986). Metabolic activity and elemental composition of Krill and other zooplankton from Prydz Bay, Antarctica, during early summer (November–December). Mar. Biol. 92: 545–555

    Google Scholar 

  15. Ikeda, T., Mitchell, A. W. (1982). Oxygen uptake, ammonia excretion and phosphate excretion by krill and other antarctic zooplankton in relation to their body size and chemical composition. Mar. Biol. 71: 283–298

    Google Scholar 

  16. Jawed, M. (1973). Ammonia excretion by zooplankton and its significance to primary productivity during summer. Mar. Biol. 23: 115–120

    Google Scholar 

  17. Kerstan, M. (1977). Untersuchungen zur Nahrungsökologic von Aurelia aurita Lam. Master thesis. Kiel University

  18. Kremer, P. (1976). Excretion and body composition of the ctenophore Mnemiopsis leidyi (A. Agassiz): comparisons and consequences. Proc 10th Eur. mar. Biol. Symp. 2: 351–362 [Persoone, G., Jaspers, F. (eds.) Universa Press, Wetteren, Belgium]

    Google Scholar 

  19. Kremer, P. (1977). Respiration and excretion by the ctenophore Mnemiopsis leidyi. Mar. Biol. 44: 43–50

    Google Scholar 

  20. Kremer, P. (1982). Effect of food availability on the metabolism of the ctenophore Mnemiopsis mccradyi. Mar. Biol. 71: 149–156

    Google Scholar 

  21. Kremer, P., Canino, M. F., Gilmer, R. W. (1986). Metabolism of epipelagic tropical ctenophores. Mar. Biol. 90: 403–412

    Google Scholar 

  22. Krüger, F. (1968). Stoffwechsel und Wachstum bei Scphomedusen. Helgoländer wiss. Meeresunters. 18: 367–383

    Google Scholar 

  23. Kuz'micheva, V. T. (1980). Uroven' dykhaniya meduz chenogo moria. In: Vinogradov, M. E., Heerkloss, R. (eds.) Bioproduktivität des Pelagials im Schwarzen Meer. Wilhelm Pieck University, Rostock, p. 91–94

    Google Scholar 

  24. Lindahl, O., Hernroth, L. (1983). Phyto-zooplankton community in coastal waters of Western Sweden — an ecosystem out of balance? Mar. Ecol. Prog. Ser. 10: 119–126

    Google Scholar 

  25. Möller, H. (1978). Significance of coelenterates in relation to other plankton organisms. Meeresforsch. Rep. mar. Res. 27: 1–18

    Google Scholar 

  26. Möller, H. (1980a). A summer survey of large zooplankton, particularly seyphomedusae, in North Sea and Baltic. Meeresforsch. Rep. mar. Res. 28: 61–68

    Google Scholar 

  27. Möller, H. (1980b). Population dynamics of Aurelia aurita medusae in Kiel Bight, Germany (FRG). Mar. Biol. 60: 123–128

    Google Scholar 

  28. Muscatine, L., Marian, R. E. (1982). Dissolved inorganic nitrogen flux in symbiotic and nonsymbiotic medusae. Limnol. Oceanogr. 27: 910–917

    Google Scholar 

  29. Phillipson, J. (1981). Bioenergetic options and phylogeny. In: Towsend, C. P., Calow, P. (eds.) Physiological ecology: an evolutionary approach to resource use. Blackwell Scientific Publications, London, p. 20–45

    Google Scholar 

  30. Pollehne, F. (1986). Benthic nutrient regeneration processes in different sediment types of Kiel Bight. Ophelia 26: 359–368

    Google Scholar 

  31. Prosser, C. L. (1973). Comparative animal physiology. 3rd ed. W. B. Saunders & Co., Philadelphia

    Google Scholar 

  32. Purcell, J. E. (1985). Predation on fish eggs and larvae by pelagic cnidarians and ctenophores. Bull. mar. Sci. 37: 739–755

    Google Scholar 

  33. Raymont, J. E. G. (1983). Plankton and productivity in the oceans. 2nd ed. Pergamon Press, Oxford

    Google Scholar 

  34. Redfield, A. C., Ketchum, B. H., Richards, F. A. (1963). The influence of organisms on the composition of sea-water. In: Hill, M. N. (ed.) The sea. Vol. 2. Wiley & Sons, New York, p. 26–77

    Google Scholar 

  35. Sage, L. E., Herman, S. S. (1972). Zooplankton of the Sandy Hook Bay area, N. J. Chesapeake Sci. 13: 29–38

    Google Scholar 

  36. Schneider, G. (1985). Zur ökologischen Rolle der Ohrenqualle (Aurelia aurita Lam.) im Pelagial der Kieler Bucht. Ph. D. thesis. Kiel University

  37. Schneider, G. (1988a). Chemische Zusammensetzung und Biomasseparameter der Ohrenqualle Aurelia aurita. Helgoländer Meeresunters: 42: 319–327

    Google Scholar 

  38. Schneider, G. (1988b). Larvae production of the common jellyfish Aurelia aurita in the Western Baltic 1982–1984. Kieler Meeresforsch. (Sonderh.) 6:

  39. Shenker, M. J. (1984). Scypomedusae in surface waters near the Oregon coast, May–August, 1981. Estuar., cstl. Shelf Sci. 19: 619–632

    Google Scholar 

  40. Shushkina, E. A., Musayeva, E. I. (1983). The role of jellyfish in the energy system of Black Sea plankton community. Oceanology, Wash. 23: 92–96

    Google Scholar 

  41. Smetacek, V., Dawson, R., Pollehne, F., Bodungen, B. von, Bölter, M., von Bröckel, K., Knoppers, B., Liebezeit, G., Martens, B., Peinert, R., Stegmann, P., Wolter, K., Zeitzschel, B. (1987). The pelagic system. In: Rumohr, H., Walger, E., Zeitzschel, B. (eds.) Seawater — sediment interactions in coastal waters. Springer Verlag, Berlin, p. 32–68

    Google Scholar 

  42. Smetacek, V., Bodungen, B. von, Knoppers, B., Peinert, R., Pollehne, F., Stegmann, P., Zeitzschel, B (1984). Seasonal stages characterizing the annual cycle of an inshore pelagic system. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer. 183: 126–135

    Google Scholar 

  43. Stoecker, D. K., Michaels, E., Davis, L. (1987). Grazing by the jellyfish, Aurelia aurita, on microzooplankton. J. Plankton Res. 9: 901–915

    Google Scholar 

  44. Thiel, H. (1962). Untersuchungen über die Strobilisation von Aurelia aurita Lam. an einer Population der Kieler Förde. Kieler Meeresforsch. 13: 198–230

    Google Scholar 

  45. Thill, H. (1937). Beiträge zur Kenntnis der Aurelia aurita (L.). Z. wiss. Zool. 150:51–97

    Google Scholar 

  46. Veer, H. W., van der, Oorthuysen, W. (1985). Abundance, growth and food demand of the scyphomedusa Aurelia aurita in the Western Wadden Sea. Neth. J. Sea Res. 19: 38–44

    Google Scholar 

  47. Veer, H. W., van der, Sadée, C. F. M. (1984). Seasonal occurrence of the ctenophore Pleurobrachia pileus in the western Dutch Wadden Sea. Mar. Biol. 79:219–227

    Google Scholar 

  48. Vidal, J., Whitledge, T. E. (1982). Rates of metabolism of planktonic crustaceans as related to body weight and temperature of habitat. J. Plankton Res. 4: 77–84

    Google Scholar 

  49. Weisse, T. (1985). Die Biomasse und Stoffwechselaktivität des Mikro- und Mesozooplanktons in der Ostsee. Ber. Inst. MeeresKde Kiel 144

  50. Williams, R. B., Murdoch, M. B., Thomas, L. K. (1968). Standing crop and importance of zooplankton in a system of shallow estuaries. Chesapeake Sci. 9: 42–51

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schneider, G. The common jellyfish Aurelia aurita: standing stock, excretion and nutrient regeneration in the Kiel Bight, Western Baltic. Mar. Biol. 100, 507–514 (1989). https://doi.org/10.1007/BF00394827

Download citation

Keywords

  • Biomass
  • Phytoplankton
  • Nutrient Cycling
  • Allometric Equation
  • Nutrient Demand