Skip to main content

A cell system for symplastic transport of photoassimilate between meristoderm and sieve elements in Alaria teniufolia

Abstract

Prior to long-distance assimilate transport in the blades of Laminariales, photoassimilate from the meristoderm (source tissue) must first be transferred across the cortex before it can be loaded into the sieve elements. This radial assimilate transfer seems to be a symplastic parenchyma transport. The wings of Alaria tenuifolia Setchell are only a few cell layers thick and reveal a continuous cell system interconnecting the meristoderm with the sieve elements. This cell system probably provides an uninterrupted route for the symplastic transverse assimilate transfer and loading. The tissue topography of the wings, the anatomy of the composing cell types, and the micromorphology of the cellular network channelling assimilate to the sieve element system are described. The anatomical results are discussed with regard to the transport physiology of Laminariales in general and the possible mode of sieve element loading.

This is a preview of subscription content, access via your institution.

Literature cited

  1. Bisalputra, T.: Electron microscopic study of the protoplasmic continuity in certain brown algae. Can. J. Bot.44, 89–93 (1966)

    Google Scholar 

  2. Buggeln, R. G.: The rate of translocation in Alaria esculenta (Laminariales, Phaeophyceae). J. Phycol. 12, 439–442 (1976)

    Google Scholar 

  3. Buggeln, R. G.: Physiological investigations on Alaria esculenta (Laminariales, Phaeophyceae). II. Role of translocation in blade growth. J. Phycol. 13, 212–218 (1977)

    Google Scholar 

  4. Buggeln, R. G.: Physiological investigations on Alaria esculenta (Laminariales, Phaeophyceae). III. Exudation by the blade. J. Phycol. 14, 54–56 (1978)

    Google Scholar 

  5. Buggeln, R. G.: Source-sink relationships in the blade of Alaria esculenta (Laminariales, Phaeophyceae). J. Phycol. 17, 102–104 (1981)

    Google Scholar 

  6. Buggeln, R. G. and S. Lucken: Kinetic characteristics of photoassimilate translocation in Alaria esculenta (Laminariales, Phaeophyceae). Planta 147, 241–245 (1979)

    Google Scholar 

  7. Giaquinta, R. T.: Phloem loading of sucrose. Ann. Rev. Plant Physiol. 34, 347–387 (1983)

    Article  Google Scholar 

  8. Hellebust, J. A. and A. Haug: Photosynthesis, translocation and alginic acid synthesis in Laminaria digitata and Laminaria hyperborea. Can. J. Bot. 50, 169–176 (1972)

    Google Scholar 

  9. Kibbe, A. L.: Some points in the structure of Alaria fistulosa. Puget Sound mar. Stn. Publ. 1, 43–57 (1915)

    Google Scholar 

  10. Kremer, B. P.: Transversal profiles of carbon assimilation in the fronds of three Laminaria species. Mar. Biol. 59, 95–103 (1980)

    Google Scholar 

  11. Nicholson, N. L.: Anatomy of the medulla of Nereocystis. Bot. Mar. 19, 23–31 (1976)

    Google Scholar 

  12. Oliver, F. W.: On the obliteration of the sieve-tubes in Laminarieae. Ann. Bot. 1, 95–117 (1887)

    Google Scholar 

  13. Parker, B. C.: Translocation in Macrocystis. III. Composition of sieve tube exudate and identification of the major C14-labeled products. J. Phycol. 2, 38–41 (1966)

    Google Scholar 

  14. Parker, B. C. and J. Huber: Translocation in Macrocystis. II. Fine structure of sieve tubes. J. Phycol. 1, 172–179 (1965)

    Google Scholar 

  15. Schmitz, K.: Translocation. In: The biology of seaweeds, pp 534–558. Ed. by C. S. Lobban and M. J. Wynne. Oxford: Blackwell Scientific Publications 1981

    Google Scholar 

  16. Schmitz, K. and R. Kühn: Fine structure, distribution and frequency of plasmodesmata and pits in the cortex of Laminaria hyperborea and L. saccharina. Planta 154, 385–392 (1982)

    Google Scholar 

  17. Schmitz, K., K. Lüning und J. Willenbrink: CO2-Fixierung und Stofftransport in benthischen marinen Algen. II. Zum Ferntransport 14C-markierter Assimilate bei Laminaria hyperborea und Laminaria saccharina. Z. Pflanzenphys. 67, 418–429 (1972)

    Google Scholar 

  18. Schmitz, K. and L. M. Srivastava: Fine structure and development of sieve tubes in Laminaria groenlandica Rosenv. Cytobiol. 10, 66–87 (1974)

    Google Scholar 

  19. Schmitz, K. and L. M. Srivastava: On the fine structure of sieve tubes and the physiology of assimilate transport in Alaria marginata. Can. J. Bot. 53, 861–876 (1975)

    Google Scholar 

  20. Schmitz, K. and L. M. Srivastava: Long distance transport in Macrocystis integrifolia. I. Translocation of 14C-labeled assimilates. Plant Physiol. 63, 995–1002 (1979)

    Google Scholar 

  21. Smith, A. J.: The comparative histology of some of the Laminariales. Am. J. Bot. 26, 571–585 (1939)

    Google Scholar 

  22. Steinbiß, H. H. und K. Schmitz: CO2-Fixierung und Stofftransport in benthischen marinen Algen. V. Zur autoradiographischen Lokalisation der Assimilattransportbahnen im Thallus von Laminaria hyperborea. Planta 112, 253–263 (1973)

    Google Scholar 

  23. Sykes, M. G.: Anatomy and histology of Macrocystis pyrifera and Laminaria saccharina. Ann. Bot. 22, 291–325 (1908)

    Google Scholar 

  24. Wille, N.: Beiträge zur physiologischen Anatomie der Laminariaceen, 70 pp. Christiania: Norske Fredericks Universitet 1897

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Communicated by O. Kinne, Hamburg

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmitz, K. A cell system for symplastic transport of photoassimilate between meristoderm and sieve elements in Alaria teniufolia . Mar. Biol. 78, 209–214 (1984). https://doi.org/10.1007/BF00394703

Download citation

Keywords

  • Cell Layer
  • Cell System
  • Cellular Network
  • Element System
  • Source Tissue