Skip to main content
Log in

Interrelations between glycogen, poly-β-hydroxybutyric acid and lipids during accumulation and subsequent utilization in a Pseudomonas

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A pleomorphic pseudomonad, V-19, was isolated from activated sludge on the basis of its floc-forming capacity in 0.1% casitone −0.035% yeast extract (CYE) −0.2% glycerol medium. In the late exponential phase of growth morphological changes and flocculation phenomena took place accompanied by a massive deposition of reserve granules in the cell.

Chemical and electron-microscopical examination revealed 3 types of storage products: glycogen, poly-β-hydroxybutyric acid (PHB) and ether-extractable lipids. These products were isolated and chemically characterized.

In CYE medium supplied with 0.5% glucose or glycerol as the carbon source mainly ether-soluble lipids and glycogen were synthesized. On continued incubation these materials were slowly utilized, which enabled the cells to survive for long periods of time.

Growth in inorganic salts medium (0.1% ammonium sulfate; 1% carbon source) yielded cells containing different accumulated products, depending on the carbon source used. Glycerol-grown cells contained mainly glycogen, but also ether-soluble lipid, and no PHB. Glucose was largely converted into gluconic acid and excreted into the medium before being deposited in the form of PHB as the primary product of assimilation. Subsequently, PHB was metabolized thereby being partly transformed into glycogen and ether-soluble lipid.

Addition of ammonium sulfate to nitrogen-starved cells caused a ready mobilization of the accumulated products, resulting in a net synthesis of reservefree cell material and an increase in the number of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoine, A. D. and Tepper, B. S. 1969a. Environmental control of glycogen and lipid content of Mycobacterium phlei.—J. Gen. Microbiol. 55: 217–226.

    Google Scholar 

  • Antoine, A. D. and Tepper, B. S. 1969b. Characterization of glycogens from Mycobacteria.—Arch. Biochem. Biophys. 134: 207–213.

    Google Scholar 

  • Barker, S. A., Bourne, E. J. and Whiffen, D. H. 1956. Use of infrared analysis in the determination of carbohydrate structure.—Methods Biochem. Anal. 3: 213–245.

    Google Scholar 

  • Barry, C., Gavard, R., Milhaud, G. et Aubert, J. P. 1953. Etude du glycogène extrait de Bacillus megatherium.—Ann. Inst. Pasteur 84: 605–613.

    Google Scholar 

  • Brian, B. L. and Gardner, E. W. 1967. Preparation of bacterial fatty acid methyl esters for rapid characterization by gas-liquid chromatography.—Appl. Microbiol. 15: 1499–1500.

    Google Scholar 

  • Crabtree, K., Boyle, W., McCoy, E. and Rohlich, G. A. 1966. A mechanism of floc formation by Zoogloea ramigera.—J. Water Pollut. Contr. Fed. 38: 1968–1980.

    Google Scholar 

  • Dawes, E. A. and Ribbons, D. W. 1964. Some aspects of the endogenous metabolism of bacteria.—Bacteriol. Rev. 28: 126–149.

    Google Scholar 

  • Dawes, E. A. and Ribbons, D. W. 1965. Studies on the endogenous metabolism of Escherichia coli.—Biochem. J. 95: 332–343.

    Google Scholar 

  • Deinema, M. H. and Zevenhuizen, L. P. T. M. 1971. Formation of cellulose fibrils by Gramnegative bacteria and their role in bacterial flocculation.—Arch. Mikrobiol. 78: 42–57.

    Google Scholar 

  • Ensign, J. C. 1970. Long-term starvation survival of rod and spherical cells of Arthrobacter crystallopoietes.—J. Bacteriol 103: 569–577.

    Google Scholar 

  • Ghosh, H. P. and Preiss, J. 1965. The isolation and characterization of glycogen from Arthrobacter sp. NRRL B1973.—Biochim. Biophys. Acta 104: 274–277.

    Google Scholar 

  • Gunja-Smith, Z., Marshall, J. J. and Smith, E. E. 1971. Enzymatic determination of the unit chain length of glycogen and related polysaccharides.—FEBS Letters 13: 309–311.

    Google Scholar 

  • Van Houte, J. and Jansen, J. M. 1970. Role of glycogen in survival of Streptococcus mitis.—J. Bacteriol. 101: 1083–1085.

    Google Scholar 

  • Jamieson, G. R. 1970. Structure determination of fatty esters by gas liquid chromatography. p. 107–159. In: F. D. Gunstone (ed.), Topics in lipid chemistry, Vol. 1.—Logos Press, London.

    Google Scholar 

  • Kallio, R. E. and Harrington, A. A. 1960. Sudanophilic granules and lipid of Pseudomonas methanica.—J. Bacteriol. 80: 321–324.

    Google Scholar 

  • Kates, M. 1964. Bacterial lipids.—Advan. Lipid Res. 2: 17–90.

    Google Scholar 

  • Lennarz, W. J. 1966. Lipid metabolism in the bacteria.—Advan. Lipid Res. 4: 175–225.

    Google Scholar 

  • Levine, H. B. and Wolochow, H. 1960. Occurrence of poly-β-hydroxybutyrate in Pseudomonas pseudomallei.—J. Bacteriol. 79: 305–306.

    Google Scholar 

  • Lundgren, D. G., Alper, R., Schnaitman, C. and Marchessault, R. H. 1965. Characterization of poly-β-hydroxybutyrate extracted from different bacteria.—J. Bacteriol 89: 245–251.

    Google Scholar 

  • Madsen, N. B. 1963. The biological control of glycogen metabolism in Agrobacterium tumefaciens. —Can. J. Biochem. Physiol. 41: 561–571.

    Google Scholar 

  • Mulder, E. G., Deinema, M. H., Van Veen, W. L. and Zevenhuizen, L. P. T. M. 1962. Polysaccharides, lipids and poly-β-hydroxybutyrate in microorganisms.—Rec. Trav. Chim. Pays-Bas 81: 797–809.

    Google Scholar 

  • Sigal, N., Cattaneo, J. and Segel, I. H. 1964. Glycogen accumulation by wild-type and uridine diphosphate glucose pyrophosphorylase-negative strains of Escherichia coli.—Arch. Biochem. Biophys. 108: 440–451.

    Google Scholar 

  • Slepecky, R. A. and Law, J. H. 1960. A rapid spectrophotometric assay of α,β-unsaturated acids and β-hydroxy acids.—Anal. Chem. 32: 1697–1699.

    Google Scholar 

  • Sobek, J. M., Charba, J. F. and Foust, W. N. 1966. Endogenous metabolism of Azotobacter agilis.—J. Bacteriol. 92: 687–695.

    Google Scholar 

  • Somogyi, M. 1952. Notes on sugar determination.—J. Biol. Chem. 195: 19–23.

    Google Scholar 

  • Stanier, R. Y., Doudoroff, M., Kunisawa, R. and Contopoulou, R. 1959. The role of organic substrates in bacterial photosynthesis.—Proc. Nat. Acad. Sci. 45: 1246–1260.

    Google Scholar 

  • Stokes, J. L. and Parson, W. L. 1968. Role of poly-β-hydroxybutyrate in survival of Sphaerotilus discophorus during starvation.—Can. J. Microbiol. 14: 785–789.

    Google Scholar 

  • Strange, R. E. 1968. Bacterial glycogen and survival.—Nature 220: 606–607.

    Google Scholar 

  • Strange, R. E., Wade, H. E. and Ness, A. G. 1963. The catabolism of proteins and nucleic acids in starved Aerobacter aerogenes.—Biochem. J. 86: 197–203.

    Google Scholar 

  • Thomas, T. D. and Batt, R. D. 1968. Survival of Streptococcus lactis in starvation conditions. —J. Gen. Microbiol. 50: 367–382.

    Google Scholar 

  • Trevelyan, W. E. and Harrison, J. S. 1952. Studies on yeast metabolism. I. Fractionation and microdetermination of cell carbohydrates.—Biochem. J. 50: 298–310.

    Google Scholar 

  • Williamson, D. H. and Wilkinson, J. F. 1958. The isolation and estimation of poly-β-hydroxybutyrate inclusions of Bacillus species.—J. Gen. Microbiol. 19: 198–209.

    Google Scholar 

  • Zevenhuizen, L. P. T. M. 1966a. Formation and function of the glycogen-like polysaccharide of Arthrobacter.—Antonie van Leeuwenhoek 32: 356–372.

    Google Scholar 

  • Zevenhuizen, L. P. T. M. 1966b. Function, structure and metabolism of the intracellular polysaccharide of Arthrobacter.—Thesis Amsterdam. (also in: Meded. Landbouwhogeschool, Wageningen 66: 1–80).

  • Zevenhuizen, L. P. T. M. 1973. Methylation analysis of acidic exopolysaccharides of Rhizobium and Agrobacterium.—Carbohyd. Res. 26: 409–419.

    Google Scholar 

  • Zevenhuizen, L. P. T. M. 1974. Spectrophotometric assay of long-chain unsaturated and hydroxy fatty acids in concentrated sulfuric acid.—Anal. Biochem. accepted for publication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zevenhuizen, L.P.T.M., Ebbink, A.G. Interrelations between glycogen, poly-β-hydroxybutyric acid and lipids during accumulation and subsequent utilization in a Pseudomonas . Antonie van Leeuwenhoek 40, 103–120 (1974). https://doi.org/10.1007/BF00394558

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00394558

Keywords

Navigation