Antonie van Leeuwenhoek

, Volume 40, Issue 1, pp 93–102 | Cite as

Aspects of inorganic nitrogen assimilation in yeasts

  • Valerie J. Burn
  • Penelope R. Turner
  • C. M. Brown
Article

Abstract

Cultures of Candida utilis utilise glutamate in preference to ammonia and ammonia in preference to nitrate. The nitrate reductase of this organism is induced by nitrate and repressed in cultures grown on glutamate or ammonia. Nitrate-grown cultures of C. utilis, irrespective of the medium nitrate concentration, behave as though nitrogen-limited. In contrast to C. utilis, Saccharomyces cerevisiae utilises ammonia in preference to glutamate.

In eight yeasts studied the highest cellular contents of biosynthetic NADP-linked glutamate dehydrogenase were found in batch cultures containing low concentrations of ammonia or in nitrogen-limited chemostat cultures. NAD-linked glutamate dehydrogenase activity was detected in extracts of cells grown in the presence of glutamate but not in those grown in the presence of ammonia.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barratt, R. W. 1963. Effect of environmental conditions on the NADP specific glutamic acid dehydrogenase in Neurospora crassa.—J. Gen. Microbiol. 33: 33–42.Google Scholar
  2. Brown, C. M. and Johnson, B. 1970. Influence of the concentration of glucose and galactose on the physiology of Saccharomyces cerevisiae in continuous culture.—J. Gen. Microbiol. 64: 279–287.Google Scholar
  3. Brown, C. M., Macdonald-Brown, D. S. and Meers, J. L. 1973. Physiological aspects of microbial inorganic nitrogen metabolism.—Advan. Microbial Physiol. 11: in press.Google Scholar
  4. Brown, C. M. and Rose, A. H. 1969. Effects of temperature on composition and cell volume of Candida utilis.—J. Bacteriol. 97: 261–272.Google Scholar
  5. Brown, C. M. and Stanley, S. O. 1972. Environment-mediated changes in the cellular content of the “pool” constituents and their associated changes in cell physiology.—J. Appl. Chem. Biotechnol. 22: 363–389.Google Scholar
  6. Campbell, I. 1971. Numerical taxonomy of various genera of yeasts.—J. Gen. Microbiol. 67: 223–231.Google Scholar
  7. Downey, R. J. 1971. Characterisation of the reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase of Aspergillus nidulans.—J. Bacteriol. 105: 759–768.Google Scholar
  8. Fawcett, J. K. and Scott, J. E. 1960. A rapid and precise method for the determination of urea.—J. Clin. Pathol. 13: 156–160.Google Scholar
  9. Garrett, R. H. and Nason, A. 1969. Further purification and properties of Neurospora nitrate reductase.—J. Biol. Chem. 244: 2870–2882.Google Scholar
  10. Hartelius, V. 1938. Vergleichende Untersuchungen über den Wert der Aminosäuren als Stickstoffquelle für Hefe.—Biochem. Z. 299: 317–333.Google Scholar
  11. Hierholzer, G. und Holzer, H. 1963. Repression der Synthese von DPN-abhängiger Glutaminsäuredehydrogenase in Saccharomyees cerevisiae durch Ammoniumionen.—Biochem. Z. 339: 175–185.Google Scholar
  12. Holzer, H. und Schneider, S. 1957. Anreicherung und Trennung einer DPN-spezifischen und einer TPN-spezifischen Glutaminsäure-dehydrogenase aus Hefe.—Biochem. Z. 329: 361–369.Google Scholar
  13. Jones, M., Pragnell, M. J. and Pierce, J. S. 1969. Absorption of amino acids by yeasts from a semi-defined medium simulating wort.—J. Inst. Brew. 75: 520–536.Google Scholar
  14. Lamminmaki, O. A. and Pierce, J. S. 1969. Activities of certain aminotransferases and NADP-dependent glutamic acid dehydrogenase in yeast during fermentation.—J. Inst. Brew. 75: 515–518.Google Scholar
  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement by the Folin phenol reagent.—J. Biol. Chem. 193: 265–275.Google Scholar
  16. Millbank, J. W. 1969. Nitrogen fixation in moulds and yeasts — a reappraisal.—Arch. Mikrobiol. 68: 32–39.Google Scholar
  17. Millbank, J. W. 1970. The effect of conditions of low oxygen tension on the assay of nitrogenase in moulds and yeasts using the acetylene reduction technique.—Arch. Mikrobiol. 72: 375–377.Google Scholar
  18. Montgomery, H. A. C. and Dymock, J. F. 1961. The determination of nitrite in water.—Analyst (London) 86: 414–416.Google Scholar
  19. Pateman, J. A. and Cove, D. J. 1967. Regulation of nitrate reduction in Aspergillus nidulans. —Nature (London) 215: 1234–1237.Google Scholar
  20. Pichinoty, F. et Méténier, G. 1966. Contribution à l'étude de la nitrate-réductase assimilatrice d'une levure.—Ann. Inst. Pasteur 111: 282–313.Google Scholar
  21. Pichinoty, F. et Méténier, G. 1967. Régulation de la biosynthèse et localisation de la nitrateréductase d' Hansenula anomala.—Ann. Inst. Pasteur 112: 701–711.Google Scholar
  22. Polakis, E. S. and Bartley, W. 1965. Changes in enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources.—Biochem. J. 97: 284–297.Google Scholar
  23. Sanwal, B. D. and Lata, M. 1961. The occurrence of two distinct glutamic dehydrogenases in Neurospora.—Can. J. Microbiol. 7: 319–328.Google Scholar
  24. Sanwal, B. D. and Lata, M. 1962. Effect of glutamic acid on the formation of two glutamic acid dehydrogenases of Neurospora.—Biochem. Biophys. Res. Commun. 6: 404–409.Google Scholar
  25. Schwencke, J. and Magaña-Schwencke, N. 1969. Derepression of a proline transport system in Saccharomyces chevalieri by nitrogen starvation.—Biochim. Biophys. Acta 173: 302–312.Google Scholar
  26. Silver, W. S. 1957. Pyridine nucleotide-nitrate reductase from Hansenula anomala, a nitrate reducing yeast.—J. Bacteriol. 73: 241–246.Google Scholar
  27. Sims, A. and Folkes, B. 1964. A kinetic study of the assimilation of 15N ammonia and the synthesis of amino acids in an exponentially growing culture of Candida utilis.—Proc. Roy. Soc. (London) B 159: 479–502.Google Scholar
  28. Surdin, Y., Sly, W., Sire, J., Bordes, A. M. et De Robichon-Szulmajster, H. 1965. Propriétés et contrôle génétique du système d'accumulation des acides aminés chez Saccharomyces cerevisiae.—Biochim. Biophys. Acta 107: 546–566.Google Scholar
  29. Tempest, D. W., Meers, J. L. and Brown, C. M. 1973. Glutamate synthetase (GOGAT); a key enzyme in the assimilation of ammonia by prokaryotic organisms, p. 167–182. In S. Prusiner and E. R. Stadtman (eds.), The enzymes of glutamine metabolism.—Academic Press. New York.Google Scholar
  30. Thomulka, K. W. and Moat, A. G. 1972. Inorganic nitrogen assimilation in yeasts: alteration in enzyme activities associated with changes in cultural conditions and growth phase. —J. Bacteriol 109: 25–33.Google Scholar
  31. Westphal, W. und Holzer, H. 1964. Synthese von NAD-abhängiger Glutamat-dehydrogenase in Protoplasten von Saccharomyces carlsbergensis.—Biochim. Biophys. Acta 89: 42–46.Google Scholar
  32. Wickerham, L. J. 1946. A critical evaluation of the nitrogen assimilation tests commonly used in the classification of yeasts.—J. Bacteriol. 52: 293–301.Google Scholar

Copyright information

© H. Veenman & Zonen B.V. 1974

Authors and Affiliations

  • Valerie J. Burn
    • 1
  • Penelope R. Turner
    • 1
  • C. M. Brown
    • 1
  1. 1.Department of MicrobiologyUniversity of Newcastle upon TyneNewcastle upon TyneEngland
  2. 2.Department of Biological SciencesUniversity of DundeeScotland

Personalised recommendations