Skip to main content
Log in

Chemical composition of a purified membrane fraction from Sarcina aurantiaca in relation to growth phase

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The effect of the age of a culture of Sarcina aurantiaca on the chemical composition of the total membrane fraction has been investigated. Whereas the protein content is constant and the carbohydrate increases with age, the lipid content decreases which may be a reflection of increased binding of the lipid to protein. The carbohydrates present in the membrane are mannose, galactose, glucose and ribose and their relative concentrations change from the exponential to stationary phase. As the cell goes into stationary phase, the amino acid composition of the protein changes with a large increase in alanine and smaller increases in lysine and methionine. The increase in alanine and lysine may be associated with an accumulation of incomplete wall precursors in the membrane during stationary phase since the murein peptide of S. aurantiaca is known to be of the l-lysine-l-alanine 3 type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. J. L. 1940. The estimation of phosphorus.—Biochem. J. 34: 858–865.

    Google Scholar 

  • Brown, J. W. 1961. Composition of fractions prepared from Sarcina lutea, protoplasts.—Biochim. Biophys. Acta 52: 368–374.

    Google Scholar 

  • Folch, J., Lees, M. and Sloane Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues.—J. Biol. Chem. 226: 497–509.

    Google Scholar 

  • Ghosh, B. K. and Carroll, K. K. 1968. Isolation, composition and structure of membrane of Listeria monocytogenes.—J. Bacteriol. 95: 688–699.

    Google Scholar 

  • Gilby, A. R., Few, A. V. and McQuillen, K. 1958. The chemical composition of the protoplast membrane of Micrococcus lysodeikticus.—Biochim. Biophys. Acta 29: 21–29.

    Google Scholar 

  • Gray, E. M. M. 1973. Investigation into the pigmentation and membrane structure of Sarcina aurantiaca.—Ph. D. Thesis, St. Andrews University.

  • Grula, E. A., Butler, T. F., King, R. D. and Smith, G. L. 1967. Bacterial cell membranes. II. Possible structure of the basal membrane continuum of Micrococcus lysodeikticus.—Can. J. Microbiol. 13: 1499–1507.

    Google Scholar 

  • Hodge, J. E. and Hofreiter, B. T. 1962. Determination of reducing sugars and carbohydrates, p. 380–394. In R. L. Whistler and M. L. Wolfrom (eds.), Methods in carbohydrate chemistry. Vol. 1.—Academic Press, London.

    Google Scholar 

  • Hunter, M. I. S. and Thirkell, D. 1971. Variation in fatty acid composition of Sarcina flava membrane lipid with the age of the bacterial culture.—J. Gen. Microbiol. 65: 115–118.

    Google Scholar 

  • Hunter, M. I. S. 1971. Structural aspects of the membrane and ultrastructural features of Sarcina flava and Sarcina morrhuae.—Ph. D. Thesis, St. Andrews University.

  • Moore, S. and Stein, W. H. 1954. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds.—J. Biol. Chem. 211: 907–913.

    Google Scholar 

  • Morrison, S. J., Tornabene, T. G. and Kloos, W. E. 1971. Neutral lipids in the study of relationships of members of the Family Micrococcaceae.—J. Bacteriol. 108: 353–358.

    Google Scholar 

  • O'Leary, W. M. 1967. The chemistry and metabolism of microbial lipids.—The World Publishing Co., Cleveland and New York.

    Google Scholar 

  • Pridham, J. B. 1956. Determination of sugars on paper chromatograms with p-anisidine hydrochloride. —Anal. Chem. 28: 1967–1968.

    Google Scholar 

  • Salton, M. R. J. and Freer, J. H. 1975. Composition of the membranes isolated from several Gram-positive bacteria.—Biochim. Biophys. Acta 107: 531–538.

    Google Scholar 

  • Schneider, W. C. 1957. Determination of nucleic acids in tissues by pentose analysis, p. 680–684. In S. P. Colowick and N. O. Kaplan, (eds.), Methods in enzymology, Vol. 3.—Academic Press, London.

    Google Scholar 

  • Shaw, N. 1970. Bacterial glycolipids.—Bacteriol. Rev. 34: 365–377.

    Google Scholar 

  • Stimson, W. H. 1971. Gas-liquid chromatography of hexosamines.—F.E.B.S.Letters 13: 17–20.

    Google Scholar 

  • Sweeley, C. C., Bentley, R., Makita, M. and Wells, W. W. 1963. Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances.—J. Amer. Chem. Soc. 85: 2497–2507.

    Google Scholar 

  • Thirkell, D. and Hunter, M. I. S. 1972. Chemical composition of a purified membrane fraction from Sarcina flava in relation to growth phase.—Antonie van Leeuwenhoek 38: 351–356.

    Google Scholar 

  • Ward, J. B. and Perkins, H. R. 1968. The chemical composition of the membranes of protoplasts and L-forms of Staphylococcus aureus.—Biochem. J. 106: 391–400.

    Google Scholar 

  • Wells, M. A. and Dittmer, J. C. 1963. The use of Sephadex for the removal of non-lipid contaminants from lipid extracts.—Biochemistry 2: 1259–1263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirkell, D., Gray, E.M.M. Chemical composition of a purified membrane fraction from Sarcina aurantiaca in relation to growth phase. Antonie van Leeuwenhoek 40, 65–70 (1974). https://doi.org/10.1007/BF00394554

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00394554

Keywords

Navigation