Skip to main content
Log in

The rumen and hindgut as source of ruminant methanogenesis

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The advantage of ruminants is their ability to convert fibrous biomass to high quality protein for human nutrition purposes. Rumen fermentation, however, is always associated with the formation of methane — a very effective greenhouse gas. Hindgut fermentation differs from rumen fermentation by a substantially lower methane production and the presence of reductive acetogenesis or dissimilatory sulfate reduction. Sulfate reduction and methanogenesis seem to be mutually exclusive, while methanogenesis and reductive acetogenesis may occur simultaneously in the hindgut. Although acetogenic bacteria have been isolated from the bovine rumen, methanogenesis prevails in the forestomachs. The substitution of acetate for methane as a hydrogen sink in the rumen should increase energy yield for the animal and decrease methane emissions into the environment. Differences in the major hydrogen sinks in both microbial ecosystems are discussed and mainly related to differences in substrate availability and to the absence of protozoa in the hindgut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Allen, A.: 1981, ‘Structure and Function of Gastrointestinal Mucus, in: Johnson, L. R. (ed.), Physiology of the Gastrointestinal Tract, Raven Press, New York, pp. 617–639.

    Google Scholar 

  • Bleicher, K. and Winter, J.: 1994, ‘Formate Production and Utilization by Methanogens by Sewage Sludge Consortia-Interference with the Concept of Interspecies Formate Transfer’, Appl. Microbiol. Biotechnol. 40, 910–915.

    Google Scholar 

  • Breznak, J. A. and Switzer, J. M.: 1986, ‘Acetate Synthesis from H2 Plus CO2 by Termite Gut Microbes’, Appl. Environ. Microbiol. 52, 623–630.

    Google Scholar 

  • Breznak, J. A. and Kane, M. D.: 1990, ‘Microbial H2/CO2 Acetogenesis in Animal Guts: Nature and Nutritional Significance’, Microbiol. Rev. 87, 309–314.

    Google Scholar 

  • Cummings, J. H. and Macfarlane, G. T.: 1991, ‘The Control and Consequences of Bacterial Fermentation in the Human Colon’, J. Appl. Bacteriol. 70, 443–459.

    Google Scholar 

  • Crutzen P. J., Aselmann L. and Seiler W.: ‘Methane Production by Domestic Animals, Wild Ruminants and other Herbivorous Fauna, and Humans’, Tellus 38B, 271–284.

  • Czerkawski, J. W.: 1986, An Introduction to Rumen Studies, Pergamon Press, Oxford, New York, Toronto, Sydney, Frankfurt.

    Google Scholar 

  • De Graeve, K. G. and Demeyer, D. I. 1988, cited in Demeyer, D. I.: 1991, ‘Quantitative Aspects of Microbial Metabolism in the Rumen and Hindgut’, in: Jounay, J.-P. (ed.), Rumen Microbial Metabolism and Ruminant Digestion, Institut Nationale de la Recherche Agronomique 75338 Parix Cedex 07, pp. 217–237.

    Google Scholar 

  • De Graeve, K. G., Grivet, J. P., Durand, M., Beaumatin, P. and Demeyer, D. I.: 1990, ‘NMR Study of 13CO2 Incorporation into Short-Chain Fatty Acids by Pig Large-Intestinal Flora’, Can. J. Microbiol. 36, 579–582.

    Google Scholar 

  • De Graeve, K. G., Grivet, J. P., Durand, M., Beaumatin, P., Cordelet, C., Hannequart, G and Demeyer, D. I.: 1994, ‘Competition Between Reductive Acetogenesis and Methanogenesis in the Pig Large-Intestinal Flora’, J. Appl. Bacteriol. 76, 55–61.

    Google Scholar 

  • Demeyer, D. I.: 1991, ‘Quantitative Aspects of Microbial Metabolism in the Rumen and Hindgut’, in Journay, J.-P. (ed.), Rumen Microbial Metabolism and Ruminant Digestion, Institut Nationale de la Recherche Agronomique, 75338 Paris Cedex 07, pp. 217–237.

    Google Scholar 

  • Demeyer, D. I. and De Graeve, K. G.: 1991, ‘Differences in Stoichiometry Between Rumen and Hindgut Fermentation’, Adv. Anim. Physiol. Anim. Nutr. 22, 50–61.

    Google Scholar 

  • Demeyer, D. I. and van Nevel, C. J.: 1975, ‘Methanogenesis, an Integrated Part of Carbohydrate Fermentation, and its Control’, in: McDonald, I. W. and Warner, A. C. I. (eds.) Proceedings of the IV International Symposium on Ruminant Physiology, Sydney, Australia, August 1974. The University of New England Publishing unit, pp. 366–382.

  • Demeyer, D. I., Locquet, N. and De Graeve, K.: 1993, ‘Effect van Aminozuren op Hooifermentatie door Pens-en Caecuminhoud van Runderen’, 18de Studiedag der Nederlandstalige Voedingsonderzoekers, Gent, 16 April.

  • Demeyer, D. I., De Graeve, K., Durand, M. and Stevani, J.: 1989, ‘Acetate: A Hydrogen Sink in Hindgut Fermentation as Opposed to the Rumen Fermentation’, Acta Vet. Scand. 86, 68–75.

    Google Scholar 

  • Dixon, R. and Nolan, J. V.: 1982, ‘Studies of the Large Intestine of Sheep. 1. Fermentation and Absorption in Sections of the Large Intestine’, Br. J. Nutr. 47, 289–300.

    Google Scholar 

  • Fiedler, D.: 1994, ‘Initiating Reductive Acetogenesis in the Rumen of Sheep’, Report on Co-Operative Research Project on Biological Resource Management, Available from Author.

  • Finlay, B. J. and Fenchel, T.: 1992, ‘Methanogens and Other Bacteria as Symbionts of Free-Living Anaerobic Ciliates,’ Symbiosis 14, 375–390.

    Google Scholar 

  • Gibson, G. R.: 1990, ‘Physiology and Ecology of the Sulphate-Reducing Bacteria’, J. Appl. Bacteriol. 69, 769–797.

    Google Scholar 

  • Gibson, G. R., Cummings, J. H. and Macfarlane, G. T.: 1988a, ‘Competition for Hydrogen Between Sulfate-Reducing Bacteria and Methanogenic Bacteria from the Human Large Intestine’, J. Appl. Bacteriol. 65, 241–247.

    Google Scholar 

  • Gibson, G. R., Cummings, J. H. and Macfarlane, G. T.: 1988b, ‘Use of Three-Stage Continuous Culture System to Study the Effect of Mucin on Dissimilatory Sulfate Reduction and Methanogenesis by Mixed Populations of Human Gut Bacteria’ Appl. Environ. Microbiol. 54, 2750–2755.

    Google Scholar 

  • Gibson, G. R., Cummings, J. H., Macfarlane, G. T., Allison, C., Segal, I., Vorster, H. H. and Walker, A. R. P.: 1990, ‘Alternative Pathways for Hydrogen Disposal During Fermentation in the Human Colon’, Gut 31, 679–683.

    Google Scholar 

  • Gibson, G. R., Macfarlane, G. T. and Cummings, J. H.: 1993, ‘Sulfate Reducing Bacteria and Hydrogen Metabolism in the Human Large Intestine’ Gut 34, 437–439.

    Google Scholar 

  • Gottschalk, G.: 1985, Bacterial Metabolism, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo.

    Google Scholar 

  • Greening, R. C. and Leedle, J. A. Z.: 1989, ‘Enrichment and Isolation of Acetitomaculum Ruminis, gen. nov. sp. nov.: Acetogenic Bacteria from the Bovine Rumen’, Arch. Microbiol. 151, 399–406.

    Google Scholar 

  • Grovum, W. L. and Williams, V. J.: 1977, ‘Rate of Passage of Digesta in Sheep. 6. Effects of Level of Food Intake on Mathematical Predictions of the Kinetics of Digesta in the Reticulo-Rumen and Intestines’, Br. J. Nutr. 38, 435–436.

    Google Scholar 

  • Hofmeyer, H. S., Slabbert, N. and Pienaar, J. P.: 1984, ‘Partitioning of Methane Production between Ruminal and Hindgut Fermentation’, Can. J. Anim. Science 64 (Suppl.) 171–172.

    Google Scholar 

  • Hoover, W. H.: 1978, ‘Digestion and Absorption in the Hindgut of Ruminants’, J. Anim. Sci. 46, 1789–1799.

    Google Scholar 

  • Hungate, R. E.: 1966, The Rumen and its Microbes, Academic Press, New York, London.

    Google Scholar 

  • Hungate, R. E., Smith, W., Bauchop, T., Yu, I. and Rabinowitz, J. C.: 1970, ‘Formate as an Intermediate in the Bovine Rumen Fermentation’, J. Bacteriol. 102, 389–397.

    Google Scholar 

  • Immig, I.: 1994, ‘Inhibition of Methanogenesis by Inducing Reductive Acetogenesis in the Rumen of a Sheep’, Report on Co-Operative Research Project on Biological Resource Management, Available from Author.

  • Immig, I., Fiedler, D., Van Nevel, C. and Demeyer, D. I.: 1995, ‘Inhibition of Methanogenesis in the Rumen of a Sheep with BES’, Proc. Soc. Nutr. Physiol. 4, 68.

    Google Scholar 

  • Jones, W. J.: 1991, ‘Diversity and Physiology of Methanogens’, in Rogers, J. E. and Withman, W. B. (eds.), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, American Society for Microbiology, Washington D.C., pp. 39–55.

    Google Scholar 

  • Jouany, J. P.: 1994, ‘Methods of Manipulating the Microbial Metabolism in the Rumen’, Ann. Zootech. 43, 49–62.

    Google Scholar 

  • Karr, M. R., Little, C. O. and Mitchell Jr., G. E.: 1966, ‘Starch Disappearence from Different Segments of the Digestive Tract of Steers’, J. Anim. Sci. 25, 652–654.

    Google Scholar 

  • Krumholz, L. R., Forsberg, C. Q. and Veira, D. M.: 1983, ‘Association of Methanogenic Bacteria with Rumen Protozoa’, Can. J. Microbiol. 29, 676–680.

    Google Scholar 

  • Lajoie, S. F., Bank, S., Miller, T. and Wolin, M. J.: 1988, ‘Acetate Production from Hydrogen and [13C] carbon Dioxide by the Microflora of Human Feces’, Appl. Environ. Microbiol. 54, 2723–2727.

    Google Scholar 

  • Leedle, A. Z. and Greening, R. C.: 1988, ‘Postprandial Changes in Methanogenic and Acetogenic Bacteria in the Rumens of Steers Fed High- or Low-Forage Diets Once Daily’, Appl. Environ. Microbiol. 54, 2468–2473.

    Google Scholar 

  • Leng, R. A.: 1988, ‘Dynamics of Protozoa in the Rumen’, in: Nolan, J. V., Leng, R. A. and Demeyer, D. I. (eds.), The Roles of Protozoa and Fungi in Ruminant Digestion, Pernambul Books, Armidale, Australia, pp. 51–58.

    Google Scholar 

  • Macfarlane, G. T. and Cummings, J. H.: 1991, ‘The Colonic Flora Fermentation, and Large Bowel Digestive Function’, in: Phillips, S. F., Pemberton, J. H. and Shorter, R. G. (eds.) The Large Intestine: Physiology, Pathophysiology, and Disease, Mayo Foundation, Raven Press Ltd., New York, pp. 51–92.

    Google Scholar 

  • Marty, R. J. and Demeyer, D. I.: 1973, ‘The Effect of Inhibitors of Methane Production on Fermentation Pattern and Stoichiometry in vitro Using Rumen Contents from Sheep Given Molasses’, Br. J. Nutr. 30, 369–376.

    Google Scholar 

  • Miller, T. L.: 1991, ‘Biogenic Sources of Methane’, in: Rogers, J. E. and Withman, W. B. (eds.), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, American Society for Microbiology, Washington D.C. pp. 175–187.

    Google Scholar 

  • Miller, T. L., Wolin, M. J., Hongxue, Zhao and Bryant, M. P.: 1986, ‘Characteristics of Methanogens Isolated from the Bovine Rumen’ Appl. Environ. Microbiol. 51, 201–202.

    Google Scholar 

  • Moss, A. R.: 1993, Methane, Global Warming and Production in Animals, Ministry of Agriculture, Fisheries and Food, Chalcombe Publications, United Kingdom.

    Google Scholar 

  • Murray, R. M., Bryant, A. M. and Leng, R. A.: 1976, ‘Rates of Production of Methane in the Rumen and Large Intestine of Sheep’, Br. J. Nutr. 36, 1–14.

    Google Scholar 

  • Orpin, C. G.: 1984, ‘The Role of Ciliate Protozoa and Fungi in the Rumen Digestion of Plant Cell Walls’, Anim. Feed Sci. Technol. 10, 121–143.

    Google Scholar 

  • Prins, R. A. and Lankhorst, A.: 1977, ‘Synthesis of Acetate from CO2 in the Cecum of Some Rodents’, FEMS Microbiol. Lett. 1, 255–258.

    Google Scholar 

  • Rogers, J. E. and Withman, W. B.: 1991, ‘Introduction’ in Rogers, J. E. and Withman, W. B. (eds.) Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, American Society for Microbiology, Washington D.C., pp. 1–6.

    Google Scholar 

  • Smith, A. C. and Podolsky, D. K.: 1986, cited in Macfarlane, G. T. and Cummings, J. H.: 1991, The Colonic Flora, Fermentation and Large Bowl Digestive Function, in Philips, S. F., Pemberton, J. H. and Shorter, R. G. (eds.), The Large Intestine: Physiology, Pathophysiology and Disease, Mayo Foundation 1991, Raven Press Ltd., New York, pp. 1–92.

    Google Scholar 

  • Stevani, J., Durand, M., De Graeve, K. G., Demeyer, D. I. and Grivet, J. P.: 1991, ‘Degradative Abilities and Metabolisms of Rumen and Hindgut Microbial Ecosystems’ in Sakata, T. and Snipes, R. L. (eds.), Hindgut '91, pp. 123–135.

  • Stumm, C. K., Gijzen, H. J. and Vogels, G. D.: 1982, ‘Association of Methanogenic Bacteria with Ovine Rumen Ciliates’, Br. J. Nutr. 47, 95–99.

    Google Scholar 

  • Thompson, A. M., Hogan, K. B. and Hoffman, J. S.: 1992, ‘Methane Reductions: Implications for Global Warming and Atmospheric Chemical Change’, Atmospheric Environment 26A, 2665–2668.

    Google Scholar 

  • Tyler, S. C.: 1991, ‘The Global Methane Budget’, in Rogers, J. E. and Withman, W. B. (eds.), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, American Society for Microbiology, Washington, D.C., pp. 7–38.

    Google Scholar 

  • Ulyatt, M. J., Dellow, D. W., Reid, C. S. W. and Bauchop, T.: 1975 ‘Structure and Function of the Large Intestine of Ruminants’ in McDonald, I. W. and Warner, A. C. I. (eds.), Digestion and Metabolism in the Ruminant, Proceedings of the IV International Symposium on Ruminant Physiology, Sydney, Australia, August 1974. The University of New England Publishing Unit, pp. 119–133.

  • Ushida, K., Ohashi, Y., Tokura, M., Miyazaki, K. and Kojima, Y.: 1994, ‘Sulphate Reducing and Methanogenesis in the Ovine Rumen and Porcine Caecum: A Preliminary Study for the Comparison Between the Two Microbial Ecosystems’, Abstract Hindgut Club, 25th September 1994, Department of Veterinary Physiology, University of Giessen.

  • Van Nevel, C. J. and Demeyer, D. I.: 1988, ‘Manipulation of Rumen Fermentation’, in Hobson, P. N. (ed.), The Rumen Microbial Ecosystem, Elsevier Applied Science, London, pp. 387–443

    Google Scholar 

  • Van Soest, P. J.: 1994, Nutritional Ecology of the Ruminant, Cornell University, Comstock Publishing Associates, Cornell University Press, Ithaca and London.

    Google Scholar 

  • Williams, A. G. and Coleman, G. S.: 1992, The Rumen Protozoa, Springer-Verlag, New York, Berlin, Heidelberg.

    Google Scholar 

  • Williams, V. J.: 1965, ‘Microbial Metabolism in the Forestomachs and the Large Intestine of Sheep’, Aust. J. Agric. Res. 16, 77–91.

    Google Scholar 

  • Wolin, M. J.: 1960, ‘A Theoretical Rumen Fermentation Balance’, J. Dairy Sci. 40, 1452–1459.

    Google Scholar 

  • Wolin, M. J.: 1975, ‘Interactions Between the Bacterial Species of the Rumen’, in: McDonald I. W. and Warner, A. C. I. (eds.), Proceedings of the IV International Symposium on Ruminant Physiology, Sydney, Australia, August 1974. The University of New England Publishing Unit, pp. 134–148.

  • Wolin, M. J. and Miller, T. L.: 1983, ‘Interactions of Microbial Populations in Cellulose Fermentation’, Fed. Proc. Fed. Am. Soc. Exp. Biol. 42, 109–113.

    Google Scholar 

  • Wolin, M. J. and Miller, T. L.: 1988, ‘Microbe-Microbe Interactions’, in Hobson, P. N. (ed.), The Rumen Microbial Ecosystem, Elsevier Applied Science, London, pp. 343–359.

    Google Scholar 

  • Wolin, M. J. and Miller, T. L.: 1993, ‘Bacterial Strains from Human Feces that Reduce CO2 to Acetic Acid’, Appl. Environ. Microbiol. 59, 3551–3556.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Immig, I. The rumen and hindgut as source of ruminant methanogenesis. Environ Monit Assess 42, 57–72 (1996). https://doi.org/10.1007/BF00394042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00394042

Keywords

Navigation