Skip to main content
Log in

Degradation 1,2-dimethylbenzene by Corynebacterium strain C125

  • Research Report
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In an attempt to obtain bacteria growing on 1,2-dimethylbenzene as sole carbon and energy source two different strains were isolated. One was identified as an Arthrobacter strain, the other as a Corynebacterium strain. Corynebacterium strain C125 was further investigated. The organism was not capable to grow on 1,3- and 1,4-dimethylbenzene. cis-1,2-Dihydroxycyclohexa-3,5-diene oxidoreductase and 3,4-dimethylcatechol-2,3-dioxygenase activity was found in cell extracts. When 3,4-dimethylcatechol was added to cell extract of 1,2-dimethylbenzene-grown cells, first a compound with the spectral properties of 2-hydroxy-5-methyl-6-oxo-2,4-heptadienoate was formed and subsequently acetate was produced. It is proposed that dioxygenases are involved in the initial steps of 1,2-dimethylbenzene degradation, and ring opening proceeds via meta-cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamse, A. D. (1980) New isolation of Clostridium aceticum (Wieringa). Antonie van Leeuwenhoek 46: 523–531

    Google Scholar 

  • Axcell, B. C. & P. J.Geary (1973) The metabolism of benzene by bacteria. Biochem. J. 136: 927–934

    Google Scholar 

  • Baker, W., H. F. Bondy, J. Gunb & D. Miles. (1953). 3:4, 3:5, 3:6 Dimethylcatechol. J. Chem. Soc. 1615–1619

  • Barbieri, P., G. Bestetti, G. Dehò & E. Galli (1986) Biochemical and genetic analysis of 1,2,4-trimethylbenzene and o-xylene catabolism in Pseudomonas strains. In: EMBO Workshop on Genetic Manipulation of Pseudomonads-Applications in Biotechnology and Medicine. University of Geneva, August 31–September 4 1986, Geneva

  • Bayly, R. C., S.Dagley & D. T.Gibson (1966) The metabolism of cresols by species of Pseudomonas. Biochem. J. 101: 293–301.

    Google Scholar 

  • Cummins, C. S., R. A.Lelliott & M.Rogosa (1974) Genus I. Corynebacterium. In: R. E.Buchanan & N. E.Gibbons (Eds) Bergey's Manual of Determinative Bacteriology (pp. 602–617) 8th edn. The Williams & Wilkins Co., Baltimore

    Google Scholar 

  • Davey, J. F. & D. T.Gibson (1974) Bacterial metabolism of para- and meta-xylene: oxidation of a methyl substituent. J. Bacteriol. 119: 923–929

    Google Scholar 

  • Davis, R. S., F. E.Hossler & R. W.Stone (1968) Metabolism of p- and m-xylene by species of Pseudomonas. Can. J. Microbiol. 27: 1005–1009

    Google Scholar 

  • Duff, J. C. (1941) A new general method for the preparation of o-hydroxyaldehydes from phenols and hexamethylenetetramine. J. Chem. Soc. 547–558

  • Gibson, D. T. & V.Subramanian (1984) Microbial degradation of aromatic hydrocarbons. In: D. T.Gibson (Ed) Microbial degradation of organic compounds (pp. 181–252) Marcel Dekker, Inc. New York

    Google Scholar 

  • Gibson, D. T., V.Mahadevan & J. F.Davey (1974) Bacterial metabolism of para- and meta-xylene: oxidation of the aromatic ring. J. Bacteriol. 119: 930–936

    Google Scholar 

  • Gibson, D. T. (1976) Initial reactions in the bacterial degradation of aromatic hydrocarbons, Zbl. Bakt. Hyg., I. Abt. Orig. B. 162: 157–168

    Google Scholar 

  • Grob, K. & G.Grob (1974) Organic substances in potable water and in its precursor. II. Applications in the area of Zürich. J. Chromatogr. 90: 303–313

    Google Scholar 

  • Jamison, V. W., R. L.Raymond & J. O.Hudson (1969) Microbial hydrocarbon co-oxidation III. Isolation and characterization of an α′,α′-dimethyl-cis, cis-muconic acid-producing strain of Nocardia corallina. Appl. Microbiol. 17: 855–856

    Google Scholar 

  • Jamison, V. W., R. L.Raymond & J. O.Hudson (1976) Biodegradation of high-octane gasoline. In: J. M.Sharpley & A. M.Kaplan (Eds) Proceedings of the Third International Biodegradation Symposium (pp. 189–196) London: Applied Science Publishers

    Google Scholar 

  • Jenkins, R. O. & H.Dalton (1985) The use of indole as a spectrophotometric assay substrate for toluene dioxygenase. FEMS Microbiol. Lett. 30: 227–231

    Google Scholar 

  • Kappeler, Th. & K.Wuhrmann (1978) Microbial degradation of the water soluble fraction of gas oil.. II. Bioassays with pure strains. Water Res. 12: 335–342

    Google Scholar 

  • Kunz, D. A. & P. J.Chapman (1981) Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla)mt-2: Evidence for new functions of the TOL (pWWO) plasmid. J. Bacteriol. 146: 179–191

    Google Scholar 

  • Merian, E. & M.Zander (1982) Volatile aromatics. In: O.Hutzinger (Ed.) The Handbook of Environmental Chemistry, Anthropogenic Compounds. Vol.3, B (pp. 117–161) Springer-Verlag, New York

    Google Scholar 

  • Munnecke, D. M. & D. P. H.Hsieh (1975) Microbial metabolism of a parathionxylene pesticide formulation. Appl. Microbiol. 30: 575–580

    Google Scholar 

  • Nozaka, J. & M.Kusunose (1968) Metabolism of hydrocarbons in microorganisms. I. Oxidation of p-xylene and toluene by cell-free enzyme preparations of Pseudomonas aeruginosa. Agr. Biol. Chem. 32: 1033–1039

    Google Scholar 

  • Nozaki, M. (1970) Metapyrocatechase (Pseudomonas). Methods Enzymol. 17A: 522–525

    Google Scholar 

  • Omori, T. & K.Yamada (1969) Studies on the utilization of hydrocarbons by microorganisms. XIII. Oxidation of m-xylene and pseudocumene by Pseudomonas aeruginosa. Agr. Biol. Chem. 33: 979–985

    Google Scholar 

  • Otson, R., D. T.Williams & D. C.Biggs (1982) Relationships between raw water quality treatment, and occurrence of organics in Canadian potable water. Bull. Environ. Contam. Toxicol. 28: 396–403

    Google Scholar 

  • Patty, F. A. (1963) Industrial hygiene and toxicology. Vol. 2. Toxicology. New York: Interscience Publishers

    Google Scholar 

  • Pieper, D. H., K.-H.Engesser, R. H.Don, K. N.Timmis & H. J.Knackmuss (1985) Modified ortho-cleavage pathway in Alcaligenes eutrophus JMP134 for the degradation of 4-methylcatechol. FEMS Microbiol Lett. 29: 63–67

    Google Scholar 

  • Powlowski, J. B. & S.Dagley (1985) β-Ketoadipate pathway in Trichosporon cutaneum modified for methyl-substituted metabolites. J. Bacteriol. 163: 1126–1135

    Google Scholar 

  • Reineke, W. & H.-J.Knackmuss (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl. Environ. Microbiol. 47: 395–402

    Google Scholar 

  • Schraa, G., L. M.Boone, M. S. M.Jetten, A. R. W.vanNeerven, P. J.Colberg & A. J. B.Zehnder (1986) Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl. Environ. Microbiol. 52: 1374–1381

    Google Scholar 

  • Taylor, F. & I. J., Higgins (1983) The isolation and characterization of a strain of Nocardia minima capable of growth on o-xylene. Soc. Gen. Microbiol. Q. 10: M15

  • Worsey, M. J. & P. A.Williams (1975) Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: Evidence for a new function of the TOL plasmid. J. Bacteriol. 124: 7–13

    Google Scholar 

  • Zehnder, A. J. B., B. A.Huser, T. D.Brock & K.Wuhrmann (1980) Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 124: 1–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schraa, G., Bethe, B.M., Van Neerven, A.R.W. et al. Degradation 1,2-dimethylbenzene by Corynebacterium strain C125. Antonie van Leeuwenhoek 53, 159–170 (1987). https://doi.org/10.1007/BF00393844

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393844

Key words

Navigation