Skip to main content
Log in

Subcellular localization of the common shikimate-pathway enzymes in Pisum sativum L.

  • Published:
Planta Aims and scope Submit manuscript

Abstract

5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (3-phosphoshikimate 1-carboxyvinyltransferase; EC 2.5.1.19), 3-dehydroquinate dehydratase (EC 4.2.1.10) and shikimate: NADP+ oxidoreductase (EC 1.1.1.25) were present in intact chloroplasts and root plastids isolated from pea seedling extracts by sucrose and modified-silica density gradient centrifugation. In young (approx. 10-d-old) seedling shoots the enzymes were predominantly chloroplastic; high-performance anion-exchange chromatography resolved minor isoenzymic activities not observed in density-gradientpurified chloroplasts. The initial enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (EC 4.1.2.15) was also associated with intact density-gradient-purified chloroplasts. 3-Dehydroquinate synthase (EC 4.6.1.3) and shikimate kinase (EC 2.7.1.71) were detected together with the other pathway enzymes in stromal preparations from washed chloroplasts. Plastidic EPSP synthase was inhibited by micromolar concentrations of the herbicide glyphosate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAHP:

3-deoxy-d-arabino-heptulosonate 7-phosphate

DEAE:

diethylaminoethyl

DHQase:

3-dehydroquinate dehydratase

DTT:

dithiothreitol

EPSP:

5-enolpyruvylshikimate 3-phosphate

SORase:

shikimate:NADP+ oxidoreductase

References

  • Amrhein, N., Schab, J., Steinrücken, H.C. (1980) The mode of action of the herbicide glyphosate. Naturwissenschaften 67, 356–357

    Google Scholar 

  • Anderson, N.G. (1955) Studies on isolated cell components. Exp. Cell Res. 9, 446–459

    PubMed  Google Scholar 

  • Balinsky, D., Davies, D.D. (1961) Aromatic biosynthesis in higher plants. Biochem. J. 80, 296–300

    PubMed  Google Scholar 

  • Beevers, L., Hageman, R.H. (1980) Nitrate and nitrite reduction. In: The biochemistry of plants, vol. 5: Amino acids and derivatives, pp. 115–168, Miflin, B.J., ed. Academic Press, New York London

    Google Scholar 

  • Bickel, H., Palme, L., Schultz, G. (1978) Incorporation of shikimate and other precursors into aromatic amino acids and prenylquinones of isolated spinach chloroplasts. Phytochemistry 17, 119–124

    Google Scholar 

  • Bickel, H., Schultz, G. (1979) Shikimate pathway regulation in suspensions of isolated spinach chloroplasts. Phytochemistry 18, 498–499

    Google Scholar 

  • Bowen, J.R., Kosuge, T. (1977) The formation of shikimate-3-phosphate in cell-free preparations of Sorghum. Phytochemistry 16, 881–884

    Google Scholar 

  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72, 248–254

    Article  PubMed  Google Scholar 

  • Buchholz, B., Schultz, G. (1980) Control of shikimate pathway in spinach chloroplasts by exogenous substrates. Z. Pflanzenphysiol. 100, 209–215

    Google Scholar 

  • Dewick, P.W., Haslam, E. (1969) Phenol biosynthesis in higher plants — gallic acid. Biochem. J. 113, 537–542

    PubMed  Google Scholar 

  • Feierabend, J., Brassel, D. (1977) Subcellular localization of shikimate dehydrogenase in higher plants. Z. Pflanzenphysiol. 82, 334–346

    Google Scholar 

  • Feierabend, J., Schrader-Reichhardt, U. (1976) Biochemical differentiation of plastids and other organelles in rye leaves with a high-temperature-induced deficiency of plastid ribosomes. Planta 129, 133–145

    Google Scholar 

  • Gastony, G.J., Darrow, D.C. (1983) Chloroplastic and cytosolic isozymes of the homosporous fern Athyrium filix-femina L. Am. J. Bot. 70, 1409–1415

    Google Scholar 

  • Gibbs, M., Turner, J.F. (1964) Enzymes of glycolysis. In: Modern methods of plant analysis, vol. 7, pp. 520–545, Linskens, H.F., Sanwal, B.D., Tracey, M.V., eds. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Gottlieb, L.D. (1981) Gene number in species of Astereae that have different chromosome numbers. Proc. Natl. Acad. Sci. USA 78, 3726–3729

    Google Scholar 

  • Graziana, A., Boudet, A., Boudet, A.M. (1980) Association of the quinate: NAD+ oxidoreductase with one dehydroquinate hydro-lyase isoenzyme in corn seedlings. Plant Cell Physiol. 21, 1163–1174

    Google Scholar 

  • Graziana, A., Boudet, A.M. (1980) 3-Deoxy-d-arabinoheptulosonate 7-phosphate synthase from Zea mays: general properties and regulation by tryptophan. Plant Cell Physiol. 21, 793–802

    Google Scholar 

  • Grosse, W. (1976) Enzyme der Tryptophan-Biosynthese in Etioplasten von Pisum sativum L. Z. Pflanzenphysiol. 80, 463–468

    Google Scholar 

  • Grosse, W. (1977) Untersuchungen zur Ammoniak-Entgiftung und Tryptophan-Synthese in Leukoplasten aus Samen von Juglans regia L. Z. Pflanzenphysiol. 83, 249–255

    Google Scholar 

  • Hackett, D.P. (1964) Enzymes of terminal respiration. In: Modern methods of plant analysis, vol. 7, pp. 647–694, Linskens, H.F., Sanwal, B.D., Tracey, M.V., eds. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Haslam, E. (1974) The shikimate pathway. Butterworths, London

    Google Scholar 

  • Huisman, O.C., Kosuge, T. (1974) Regulation of aromatic amino acid biosynthesis in higher plants. II. 3-Deoxy-arabinoheptulosonic acid 7-phosphate synthetase from cauliflower. J. Biol. Chem. 249, 6842–6848

    PubMed  Google Scholar 

  • Koshiba, T. (1978) Purification of two forms of the associated 3-dehydroquinate hydro-lyase and shikimate: NADP+ oxidoreductase in Phaseolus mungo seedlings. Biochim. Biophys. Acta 522, 10–18

    PubMed  Google Scholar 

  • Lambert, J.M., Boocock, M.R., Coggins, J.R, (1985) The 3-dehydroquinate synthase of the arom enzyme complex of Neurospora crassa is a zinc enzyme. Biochem. J. (in press)

  • Linhart, Y.B., Davis, M.L., Mitton, J.B. (1981) Genetic control of allozymes of shikimate dehydrogenase in Ponderosa pine. Biochem. Genet. 19, 641–646

    PubMed  Google Scholar 

  • Lück, H. (1962) Katalase. In: Methoden der enzymatischen Analyse, pp. 885–894, Bergmeyer, H.U., ed. Verlag Chemie, Weinheim

    Google Scholar 

  • Lumsden, J., Coggins, J.R. (1977) The subunit structure of the arom multienzyme complex of Neurospora crassa. Biochem. J. 161, 599–607

    PubMed  Google Scholar 

  • Marigo, G., Alibert, G., Boudet, A. (1969) Recherches sur la biosynthèse des composés aromatiques chex les végétaux supérieurs: sur l'origine des acides protocatéchique et gallique chez Quercus pedunculata Ehrh. C.R. Acad. Sci. Paris 269, 1852–1854

    Google Scholar 

  • Miflin, B.J., Beevers, H. (1974) Isolation of intact plastids from a range of plant tissues. Plant Physiol. 53, 870–874

    Google Scholar 

  • Miflin, B.J., Lea, P.J. (1980) Ammonia assimilation. In: The biochemistry of plants, vol. 5: Amino acids and derivatives, pp. 169–202, Miflin, B.J., ed. Academic Press, New York London

    Google Scholar 

  • Mitsuhashi, S., Davis, B.D. (1954) Aromatic biosynthesis. XII. Conversion of 5-dehydroquinic acid to 5-dehydroshikimic acid by 5-dehydroquinase. Biochim. Biophys. Acta 15, 54–61

    Article  PubMed  Google Scholar 

  • Mousdale, D.M., Coggins, J.R. (1984) Purification and properties of 5-enolpyruvylshikimate 3-phosphate synthase from seedlings of Pisum sativum L. Planta 160, 78–83

    Google Scholar 

  • Nkatani, H.Y., Barber, J. (1977) An improved method for isolating chloroplasts retaining their outer membranes. Biochim. Biophys. Acta 461, 510–512

    Google Scholar 

  • Numan, P.R., Hart, G.E. (1983) Genetic control of shikimate dehydrogenase in hexaploid wheat. Biochem. Genet. 21, 963–968

    PubMed  Google Scholar 

  • Reinink, M., Borstlap, A.C. (1982) 3-Deoxy-d-arabinoheptulosonate 7-phosphate synthase from pea seedlings: inhibition by l-tyrosine. Plant Sci. Lett 26, 167–171

    Google Scholar 

  • Ridley, S.M. (1983) Interaction of chloroplasts with inhibitors. Plant Physiol. 72, 461–468

    Google Scholar 

  • Rothe, G. (1973) Shikimisäure-Dehydrogenase (E.C. 1.1.1.25) in keimenden Erbsen. Biochem. Physiol. Pflanz. 164, 475–486

    Google Scholar 

  • Rothe, G.M. (1974) Intracellular compartmentation and regulation of two shikimate dehydrogenase isoenzymes in Pisum sativum. Z. Pflanzenphysiol. 74, 152–159

    Google Scholar 

  • Rothe, G.M., Hengst, G., Mildenberger, I., Scharer, H., Utesch, D. (1983) Evidence for an intra- and extraplastidic prechorismate pathway. Planta 157, 358–366

    Google Scholar 

  • Rothe, G.M., Maurer, W., Mielke, C. (1976) A study on 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase in higher plants. The existence of three isoenzymes in Pisum sativum. Ber. Dtsch. Bot. Ges. 89, 163–173

    Google Scholar 

  • Saijo, R., Kosuge, T. (1978) The conversion of 3-deoxyarabino-heptulosonate 7-phosphate to 3-dehydroquinate by sorghum seedling preparations. Phytochemistry 17, 223–225

    Google Scholar 

  • Saijo, R., Takeo, T. (1979) Some properties of the initial four enzymes involved in shikimic acid biosynthesis in tea plant. Agric. Biol. Chem. 43, 1427–1432

    Google Scholar 

  • Smith, D.D.S., Coggins, J.R. (1983) Isolation of a bifunctional domain from the pentafunctional arom enzyme complex of Neurospora crassa. Biochem. J. 213, 405–415

    PubMed  Google Scholar 

  • Sprinson, D.B., Srinivasan, P.R., Katagiri, M. (1959) 3-Deoxy-d-arabino-heptulosonic acid 7-phosphate synthase from Escherichia coli. Methods Enzymol. 5, 394–398

    Google Scholar 

  • Thompson, W.W., Foster, P., Leech, R.M. (1972) The isolation of proplastids from roots of Vicia faba. Plant Physiol. 49, 270–272

    Google Scholar 

  • Udvardy, J., Farkas, G.L. (1968) Shikimate: NADP oxidoreductase in barley leaves. Acta Biochim. Biophys. Acad. Sci. Hung. 3, 153–164

    Google Scholar 

  • Ulbrich, B., Zenk, M.H. (1980) Partial purification and properties of p-hydroxycinnamoyl-CoA: shikimate-p-hydroxycinnamoyl transferase from higher plants. Phytochemistry 19, 1625–1629

    Google Scholar 

  • Wallsgrove, R.M., Lea, P.J., Miflin, B.J. (1983) Intracellular localization of aspartate kinase and the enzymes of threonine and methionine biosynthesis in green leaves. Plant Physiol. 71, 780–784

    Google Scholar 

  • Weeden, N.F., Gottlieb, L.D. (1980) The genetics of chloroplast enzymes. J. Hered. 71, 392–396

    Google Scholar 

  • Weiss, U., Edwards, J.M. (1980) The biosynthesis of aromatic compounds. Wiley, New York

    Google Scholar 

  • Welch, G.R., Gaertner, F.H. (1976) Co-ordinate activation of a multienzyme complex by the first substrate. Arch. Biochem. Biophys. 172, 476–489

    PubMed  Google Scholar 

  • Wintermans, J.F.G.M., de Mots, A. (1965) Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta 109, 448–453

    PubMed  Google Scholar 

  • Wishnick, M., Lane, M.D. (1971) Ribulose diphosphate carboxylase from spinach leaves. Methods Enzymol. 23, 570–577

    Google Scholar 

  • Yamamoto, E. (1977) Alicyclic acid metabolism in plants. 10. Partial purification and some properties of 3-dehydroquinate synthase from Phaseolus mungo seedlings. Plant Cell Physiol. 18, 995–1007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousdale, D.M., Coggins, J.R. Subcellular localization of the common shikimate-pathway enzymes in Pisum sativum L.. Planta 163, 241–249 (1985). https://doi.org/10.1007/BF00393514

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393514

Key words

Navigation