Skip to main content
Log in

An energy cost minimizing strategy for fermentation dissolved oxygen control

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A cost-minimizing mathematical model for on-line control of dissolved oxygen using agitation speed and aeration rate was developed. In pilot scale monensin fermentation using Streptomyces cinnamonensis, this algortihm provided stable control of dissolved oxygen at 40%, reducing energy usage 27.8%. The agitation and aeration profiles provided by the algorithm respresent the pathway of least energy cost for control at the desired dissolved oxygen level. Other observed advantages of bivariable control were reduction of foaming, evaporation, and gas holdup. Reduced maintenance of compressors and agitator motors could also be expected due to decreased load. Monensin productivity equivalent to fermentation with constant agitation and aeration was not obtained, however, with potency reduced 14.8% with the dissolved oxygen control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A m2 :

cross sectional area of fermentor

A 1, A 2, A 3, A 4 :

constants of polynomial fit to Calderbank's equations

BP N/m2 :

gauge back pressure

C ag $/W/s:

cost of electrical power

C Q $/m3 :

cost of compressed air

CE mol/m3/s:

carbon dioxide evolution rate

D m:

impeller diameter

DO, DO meas, DO sp %:

dissolved oxyen saturation at any time, measured, and setpoint respectively

h m:

height of liquid in fermentor

H N/m2/mmol:

Henry's constant for oxygen in water

H av :

average gas holdup in fermentor

k L a, k L a meas, k L k sp s−1 :

oxygen mass transfer coefficient at any time, measured, and setpoint respectively

N, N sp s−1 :

agitation speed at any time and setpoint respectively

N a, N a, sp :

aeration number at any time and setpoint respectively

N i :

total number of impellers

N p :

impeller power number

N s :

number of impellers into which air is directly sparged

OU, OU meas mol/m3/s:

Oxygen uptake rate at any time and measured respectively

P W:

ungassed agitation power

P g, P g,meas, P g,sp W:

gassed agitation power at any time, measured, and set point respectively

Q, Q meas, Q sp m3/s:

aeration rate at any time, measured, and setpoint respectively

T K:

fermentation temperature

u g m/s:

linear gas velocity

V m3 :

fermentation liquid volume

\(y_{{\text{O}}_{{\text{2,}}} out} \) :

mole fraction of oxygen in fermentation off-gas

α :

calculation constant

ɛ :

motor efficiency

φ $/s:

sum of agitation and aeration costs

ρ kg/m3 :

liquid density

References

  1. Steel, M. R., Maxon, W. D.: Dissolved oxygen measurements in pilot- and production-scale novobiocin fermentations. Biotechnol. Bioeng. 8 (1966) 97–108

    Google Scholar 

  2. Hersbach, G. J. M.; van der Beek, C. P.; van Dijck, P. W. M.: The penicillins: Properties, biosynthesis and fermentation. In: Vandamme, E. J. (Ed.): Biotechnology of Industrial Antibiotics, Drugs and Pharmaceutical Sciences, vol. 22, pp. 45–140. New York: Dekker 1984

    Google Scholar 

  3. Hilgendorf, P.; Heiser, V.; Diekmann, H.; Thoma, M.: Constant dissolved oxygen concentrations in cephalosporin C fermentation: Applicability of different controllers and effect on fermentation parameters. Appl. Microbiol. Biotechnol. 27 (1987) 247–251

    Google Scholar 

  4. Flickinger, M. C.; Perlman, D.: The effect of oxygen-enriched aeration on neomycin production by Streptomyces fridiae. J. Appl. Biochem. 2 (1980) 280–291

    Google Scholar 

  5. Yegneswaran, P. K.; Gray, M. R.; Thompson, B. G.: Effect of dissolved oxygen control on growth and antibiotic production in Streptomyces clavuligerus fermentations. Biotechnol. Prog. 7 (1991) 246–250

    Google Scholar 

  6. Clark, T. A.; Hesketh, T.; Seddon, T.: Automatic control of dissolved oxygen tension via fermenter agitation speed. Biotechnol. Bioeng. 27 (1985) 1507–1511

    Google Scholar 

  7. Williams, D.; Yousefpour, P.; Weelington, E. M. H.: On-line adaptive control of a fed-batch fermentation of Saccharomyces cerevisiae. Biotechnol. Bioeng. 28 (1986) 631–645

    Google Scholar 

  8. Chen, J.; Tannahill, A. L.; Shuler, M. L.: Design of a system for control of low dissolved oxygen concentrations: Critical oxygen concentration for Azotobacter vinelandii and Escherichia coli. Biotechnol. Bioeng. 27 (1985) 151–155

    Google Scholar 

  9. Cardello, R. J.; San, K. Y.: The design of controllers for batch bioreactors. Biotechnol. Bioeng. 32 (1988) 519–526

    Google Scholar 

  10. Astrom, K. J.; Wittenmark, B.: On self tuning regulators. Automatica 9 (1973) 185–199

    Google Scholar 

  11. Hwang, Y. B.; Seung, C. L.; Chang, H. N.; Chang, Y. K.: Dissolved oxyen concentration regulation using auto-tuning proportional-integral-derivative controller in fermentation process. Biotechnol. Techniques 5 (1991) 85–90

    Google Scholar 

  12. Ko, K. Y..; McInnis, B.; Goodwin, G. C.: Adaptive control and identification of the dissolved oxygen process. Automatica 18 (1982) 727–730

    Google Scholar 

  13. Lee, S. C.; Hwang, Y. B.; Chang, H. N.; Chang, Y. K.: Adaptive control of dissolved oxygen in a bioreactor. Biotechnol. Bioeng. 37 (1991) 597–607

    Google Scholar 

  14. Van't Riet, K.: Review of measuring methods and results in nonviscous gas-liquid mass transfer in stirred vessels. Ind. Eng. Chem. Proc. Des. Dev. 18 (1979) 891–899

    Google Scholar 

  15. Rushton, J. H.; Costich, E. W.; Everett, H. J.: Power characteristics of mixing impellers. Chem. Eng. Prog. 46 (1950) 395–404 and 467–476

    Google Scholar 

  16. Calderbank, P. H.: Physical rate processes in industrial fermentation. Part I: The interfacial area in gas-liquid contacting with mechanical agitation. Trans. Inst. Chem. Eng. 36 (1958) 443–463

    Google Scholar 

  17. Nienow, A.; Machon, V.: Effect of formaldehyde on hold-up in aerated stirred tanks. Biotechnol. Bioeng. 21 (1979) 1483–1486

    Google Scholar 

  18. Peters, M. S.; Timmerhaus, K. D.; Plant design and economics for chemical engineers. 3rd Edn., p. 881. New York: McGraw-Hill 1990

    Google Scholar 

  19. Zanetti, R. (Ed.): Cost Indexes. Chemical Engineering 98 (1991) 204

  20. Cheney, W.; Kincaid, D.: Numerical mathematics and computing, 2nd Ed., pp. 459–462. Monterey: Brooks/Cole 1985

    Google Scholar 

  21. Smith, J. J.; Lilly, M. D.; Fox, R. I.: The effect of agitation on the morphology and penicillin production of Penicillium chrysogenum. Biotechnol. Bioeng. 35 (1990) 1011–1023

    Google Scholar 

  22. Toma, M. K.; Ruklisha, M. P.; Vanags, J. J.; Zeltina, M. O.; Leite, M. P.; Galinina, N. L.; Viesturs, U. E.; Tengerdy, R. P.: Inhibition of microbial growth and metabolism by excess turbulence. Biotechnol. Bioeng. 38 (1991) 552–556

    Google Scholar 

  23. Dunlop, E. H.; Ye, S. J.: Micromixing in fermentors: Metabolic changes in Saccharomyces cerevisiae and their relationship to fluid turbulence. Biotechnol. Bioeng. 36 (1990) 854–864

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shields, R.W., Kao, E.I. An energy cost minimizing strategy for fermentation dissolved oxygen control. Bioprocess Engineering 10, 91–97 (1994). https://doi.org/10.1007/BF00393391

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393391

Keywords

Navigation