Skip to main content
Log in

Application of the Fröhlich theory to the modelling of rouleau formation in human erythrocytes

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The details of Fröhlich's theory and some recent experiments on the rouleau formation of human erythrocytes which exhibit a strong interaction that appears to satisfy the prerequisites of the Fröhlich theory, are summarized. To verify whether the Fröhlich theory of long-range coherence in biological systems is applicable to the phenomenon of rouleau formation in human erythrocytes, the interactions between erythrocytes are modelled as those between two large, coupled oscillating dipoles. Relevant expressions for the resonant long-range and the van der Waals interaction are then derived. Using the available numerical data, the eigenfrequencies and the interaction energies corresponding to the experimental conditions are then derived. In the range of postulated frequencies (1011–1012 Hz) the effective interaction coefficient Ξ due to the resonant long-range forces is, indeed, found to agree with its experimental value of 3.0. However, the same value of Ξ can also be achieved through the ordinary van der Waals interactions between dipoles oscillating at lower frequencies. It is concluded that the resonant long-range interaction between erythrocytes may be responsible for the onset of rouleau formation. However, other mechanisms cannot be ruled out at this stage, especially since the Fröhlich mechanism requires a number of unconfirmed preconditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BlinowskaK. J., LechW., and WittlinA. (1985) Phys. Lett. A 109, 124.

    Google Scholar 

  • BrooksD. E. (1973) J. Coll. Interface Sci. 43, 687; 707; 714.

    Google Scholar 

  • BrooksD. E. and SeamanG. V. F. (1973) J. Coll. Interface Sci. 43, 670.

    Google Scholar 

  • ChanceB., MuellerP., DeVaultD., and PowerL. (1980) Physics Today 80, 32.

    Google Scholar 

  • DavydovA. S. (1985) Solitons in Molecular Systems, D. Reidel, Dordrecht.

    Google Scholar 

  • DelGiudiceE., DogliaS., MilaniM., and VitielloG. (1985), Nucl. Phys. B 251, 375.

    Google Scholar 

  • DeRobertisE. D. P. and DeRobertisE. M. F.Jr. (1980) Cell and Molecular Biology, Holt, Rinehart and Winston. New York.

    Google Scholar 

  • EvansE. (1986) Biorheology 23, 192.

    Google Scholar 

  • FritzO. G. (1984) Biophys. J. 46, 219.

    Google Scholar 

  • FröhlichH. (1958) Theory of Dielectrics, Oxford University Press, London.

    Google Scholar 

  • FröhlichH. (1972) Phys. Lett. A 39, 153.

    Google Scholar 

  • FröhlichH. (1978) IEEE Trans., MIT 26, 613.

    Google Scholar 

  • FröhlichH. (1980) Adv. Electron. Electron. Phys. 53, 85.

    Google Scholar 

  • Gingell, D. and Parsegian, V. A. (1971) Biophys. Soc. Abstracts, 15th Annual Meeting.

  • GrantE. H., SheppardR. J., and SouthG. P. (1978) Dielectric Behavior of Biological Molecules in Solution, Oxford University Press, Oxford.

    Google Scholar 

  • HastedJ. B. (1973) Aqueous Dielectrics, Chapman and Hall, London.

    Google Scholar 

  • LutzH. U., LiuS. C., and PalekJ. (1977) J. Cell. Biol. 73, 548.

    Google Scholar 

  • Müller-HeroldU., LutzH. U., and KedemO. (1987) J. Theor. Biol. 126, 251.

    Google Scholar 

  • NakaoM., NakaoT., and YamazoeS. (1960) Nature 187, 945.

    Google Scholar 

  • PaulR., ChatterjeeR., TuszyńskiJ. A., and FritzO. G. (1983) J. Theor. Biol. 104, 169.

    Google Scholar 

  • PokornyJ. (1980) Czech. J. Phys. B 30, 1339.

    Google Scholar 

  • PonderE. (1957) Révue d'Hématologie 12, 11.

    Google Scholar 

  • ReichR. R. (1978) Hematology: Physiopathologic Basis for Clinical Practice, Little, Brown, New York.

    Google Scholar 

  • RossS. W. and EbertR. V. (1959) J. Clin. Invest. 38, 155.

    Google Scholar 

  • RowlandsS., SewchandL. S., LovlinR. E., BeckJ. S., and EnnsE. G. (1981) Phys. Lett. A 82, 436.

    Google Scholar 

  • RowlandsS., SewchandL. S., and EnnsE. G. (1982) Phys. Lett. A 87, 256; Can. J. Physiol. Pharm. 60, 52 (1982).

    Google Scholar 

  • RowlandsS., EisenbergC. P., and SewchandL. S. (1983) J. Biol. Phys. 11, 1.

    Google Scholar 

  • SewchandL. S. and RowlandsS. (1983) Phys. Lett. A 93, 363.

    Google Scholar 

  • SiehJ. B. and SterlingC. (1969) Biochim. Biophys. Acta 184, 281.

    Google Scholar 

  • SteckT. L. (1974) J. Cell. Biol. 62, 1.

    Google Scholar 

  • TuszyńskiJ. A. (1985) Phys. Lett. A 107, 228.

    Google Scholar 

  • WebbS. J. (1980) Phys. Rep. 4, 201.

    Google Scholar 

  • WeedR. I., LaCelleP. L., and MerrillE. W. (1969) J. Clin. Invest. 48, 795.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuszyński, J.A., Strong, E.K. Application of the Fröhlich theory to the modelling of rouleau formation in human erythrocytes. J Biol Phys 17, 19–40 (1989). https://doi.org/10.1007/BF00393324

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00393324

Key words

Navigation