Marine Biology

, Volume 84, Issue 2, pp 125–130 | Cite as

EDTA chelation and zinc antagonism with cadmium in sediment: effects on the behavior and mortality of two infaunal amphipods

  • J. M. Oakden
  • J. S. Oliver
  • A. R. Flegal


The two species of infaunal amphipod crustaceans Rhepoxynius abronius (Phoxocephalidae) and Eohaustorius sencillus (Haustoriidae) are characteristic of nearshore sandy bottoms along the California (USA) coast, and are highly sensitive to moderate levels of heavy metals. In laboratory experiments, both zinc and the chelator EDTA increased the survival of amphipods in sediment containing otherwise lethal levels of cadmium (8.5 μg g-1), which are representative of moderately polluted environments. In simple choice experiments, amphipods prefer sediment with complexed cadmium. The behavioral and survival patterns of both species were similar in the experiments. EDTA prevented about 50% of the added cadmium from initially being incorporated into the sediment, and increased the rate of cadmium released from the sediment. These data illustrate the limitations of operational definitions of chemical analyses, since weak-acid (0.5 N HCl) leaches that were intended to provide an estimate of the “biologically available” metal concentrations extracted both toxic and EDTA-complexed cadmium species and did not account for their antagonistic interctions with zinc.


Zinc Heavy Metal Chemical Analysis EDTA Cadmium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bousfield, E. L.: Adaptive radiation in sand-burrowing amphipod crustaceans. Chesapeake Sci. 11, 143–154 (1970)Google Scholar
  2. Brown, V. M.: The calculation of the acute toxicity of mixtures of poisons to rainbow trout. Wat. Res. 2, 723–733 (1968)Google Scholar
  3. Bunch, R. L. and M. B. Ettinger: Biodegradability of potential organic substitutes for phosphates. Proc. 22nd ind. Waste Conf. Purdue Univ. (Engng., Extra Ser.) 129, 393–396 (1967)Google Scholar
  4. Crecelius, E. A., J. T. Hardy, C. I. Gibson, R. L. Schmidt, C. W. Apts, J. M. Gurtisen and S. P. Joyce: Copper bioavailability to marine bivalves and shrimp: relationship to cupric ion activity. Mar. envirl Res. 6, 13–26 (1982)Google Scholar
  5. Dunlop, S. and G. Chapman: Detoxication of zinc and cadmium by the freshwater protozoan Tetrahymena pyriformis. II. Growth experiment and ultrastructural studies on sequestration of heavy metals. Envir. Res. 24, 264–274 (1981)Google Scholar
  6. Eaton, J. B.: Chronic toxicity of copper, cadmium, and zinc mixtures to the fathead minnow. Wat. Res. 7, 1723–1736 (1973)Google Scholar
  7. Eisler, R. and G. R. Gardner: Acute toxicity to an estuarine teleost of mixtures of cadmium, copper, and zinc salts. J. Fish Biol. 5, 131–142 (1973)Google Scholar
  8. Engel, D. W. and W. G. Sunda: Toxicity of cupric ion to eggs of the spot Leiostomus xanthurus and the Atlantic siverside Menidia menidia. Mar. Biol. 50, 121–126 (1979)Google Scholar
  9. Erdem, C. and P. S. Meadows: Influence of mercury on the burrowing behaviour of Corophium volutator. Mar. Biol. 56, 233–237 (1980)Google Scholar
  10. Flegal, A. R.: Reference methods for sampling, handling and measuring the “biologically available” elemental concentrations of marine sediments. In: Wastes in the ocean, Vol. VI. Near shore waste disposal. Ed. by B. H. Ketchum, I. W. Duendall, P. K. Park and D. R. Kester. New York: Wiley Interscience (In press). 1984Google Scholar
  11. Foster, P. L. and F. M. M. Morel: Reversal and cadmium toxicity in a diatom: an interaction between cadmium activity and iron. Limnol. Oceanogr. 27, 745–752 (1982)Google Scholar
  12. Gardiner, J.: The chemistry of cadmium in natural water. II. The adsorption of cadmium on river muds and naturally occurring solids. Wat. Resour. Res. 8, 157–164 (1974)Google Scholar
  13. Gardiner, J.: Complexation of trace metals by ethylenediaminetetraacetic acid (EDTA) in natural waters. Wat. Res. 10, 507–514 (1976)Google Scholar
  14. Gray, J. S.: Animal-sediment relationships. Oceanogr. mar. Biol. A. Rev. 12, 223–261 (1974)Google Scholar
  15. Hershelman, G. P., H. A. Schafer, T.-K. Jan and D. R. Young: Metals in marine sediments near a large California municipal outfall. Mar. Pollut. Bull. 12, 131–134 (1981)Google Scholar
  16. Hutchinson, T. C. and H. Czyrska: Cadmium and zinc toxicity and synergism to floating aquatic plants. Wat. Pollut. Res. Can. 7, 59–65 (1972)Google Scholar
  17. Lang, W. H., D. C. Miller, P. J. Ritacco and M. Marcy: The effects of copper and cadmium on the behavior and development of barnacle larvae. In: Biological monitoring of marine pollutants, pp 165–203. Ed. by F. J. Vernberg, A. Calabrese, F. P. Thurberg and W. B. Vernberg. New York: Academic Press 1981Google Scholar
  18. Luoma, S. N. and G. W. Bryan: Factors controlling the availability of sediment-bound lead to the estuarine bivalve Scrobicularia plana. J. mar. biol. Ass. U.K. 58, 793–802 (1978)Google Scholar
  19. McIntyre, A. D.: Effects of pollution on inshore benthos. In: Ecology of marine benthos, pp 301–318. Ed. by B. Coull Columbia, South Carolina: University of South Carolina Press 1977Google Scholar
  20. Moulder, S. M.: Combined effect of the chlorides of mercury and copper in sea water on the euryhaline amphipod Gammarus duebeni. Mar. Biol. 59, 193–200 (1980)Google Scholar
  21. Negilski, D. S., M. Ahsanullah and M. C. Mobley: Toxicity of zinc, cadmium and copper to the shrimp Callianassa australiensis. II. Effects of paired and triad combinations of metals. Mar. Biol. 64, 305–309 (1981)Google Scholar
  22. Oakden, J. M.: Feeding and sediment selection in five species of central Californian phoxocephalid amphipods. J. Crustacean Biol. (Lawrence, Kansas). 4, 233–247 (1984)Google Scholar
  23. Oakden, J. M., J. S. Oliver and A. R. Flegal: Behavioral responses of phoxocephalid amphipods to organic enrichment and trace metals in sediment. Mar. Ecol. Prog. Ser. 14, 253–257 (1984)Google Scholar
  24. Oliver, J. S., P. N. Slattery, L. W. Hulberg and J. W. Nybakken: Relationships between wave disturbance and zonation of benthic invertebrate communities along a subtidal high-energy beach in Monterey Bay, California. Fish. Bull. U.S. 78, 437–454 (1980)Google Scholar
  25. Pearson, T. H. and R. Rosenberg: Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. mar. Biol. A. Rev. 16, 229–311 (1978)Google Scholar
  26. Pearson, W. H.: Threshold for detection of naphthalene and other behavioral responses by the blue crab, Callinectes sapidus. Estuaries (Solomons, Md) 3, 224–229 (1980)Google Scholar
  27. Sullivan, B. K., E. Buskey, D. C. Miller and P. J. Ritacco: Effects of copper and cadmium on growth, swimming and predator avoidance in Eurytemora affinis (Copepoda). Mar. Biol. 77, 299–306 (1983)Google Scholar
  28. Sunda, W. E., D. W. Engel and R. M. Thuotte: Effect of chemical speciation on toxicity of cadmium to grass shrimp, Palaemonetes pugio: importance of free cadmium ion. Envir. Sci. Technol. 12, 409–413 (1978)Google Scholar
  29. Swartz, R. C., W. A. Deben and F. A. Cole: A bioassay for the toxicity of sediment to marine macrobenthos. J. Wat. Pollut. Control Fed. 51, 944–950 (1979)Google Scholar
  30. Swartz, R. C., W. A. Deben, K. A. Sercu and J. O. Lamberson: Sediment toxicity and the distribution of amphipods in Commencement Bay, Washington, U.S.A. Mar. Pollut. Bull. 13, 359–364 (1982)Google Scholar
  31. Tatem, H. E. and R. A. Baker: Exposure of benthic and epibenthic estuarine animals to mercury and contaminated sediment. In: Contaminants and sediments. Vol. 1. Fate and transport, case studies, modeling, toxicity, pp 537–549. Ed. by R. A. Baker Ann Arbor, Michigan: Ann Arbor Science 1980Google Scholar
  32. Verma, S. R., M. Jain and R. C. Dalela: A laboratory study to assess separate and in combination effects of zinc, chromium and nickel to the fish Mystus vittatus. Acta hydrochim. hydrobiol. 10, 23–29 (1982)Google Scholar
  33. Weiser, W.: Factors influencing the choice of substratum in Cumella vulgaris. Limnol. Oceanogr. 1, 274–285 (1956)Google Scholar
  34. Word, J. Q. and A. J. Mearns: 60-meter control survery off southern California, 58 pp. El Segundo, California: Southern California Coastal Water Research Project 1979. (Ref/ TM 229)Google Scholar
  35. Wright, D. A. and J. W. Frain: Cadmium toxicity in Marinogammarus obtusatus: effect of external calcium. Envir. Res. 24, 338–344 (1981)Google Scholar
  36. Zamuda, C. D. and W. G. Sunda: Bioavailability of dissolved copper to the American oyster Crassostrea virginica. I. Importance of chemical speciation. Mar. Biol. 66, 77–82 (1982)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. M. Oakden
    • 1
  • J. S. Oliver
    • 1
  • A. R. Flegal
    • 1
  1. 1.Moss Landing Marine LaboratoriesMoss LandingUSA

Personalised recommendations