Marine Biology

, Volume 93, Issue 4, pp 615–625 | Cite as

Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: δ13C evidence

  • K. H. Dunton
  • D. M. Schell


Stable carbon isotope measurements (δ13C) were used to assess the importance of kelp carbon (-13.6 to-16.5‰) versus phytoplankton carbon (-25.5 to-26.5‰) to resident fauna of an isolated kelp bed community on Alaska's north arctic coast from 1979 to 1983. The predominant kelp, Laminaria solidungula, showed some seasonal variation in δ13C which was correlated with changes in the carbon content of the tissue. Animals that showed the greatest assimilation of kelp carbon (>=50%) included macroalgal herbivores (gastropods and chitons,-16.9 to-18.2‰), a nonselective suspension feeder (an ascidian,-19.0‰) and a predatory gastropod (-17.6‰). Animals that showed the least incorporation of kelp carbon into body tissues (<=7%) included selective suspension-feeders (hydroids, soft corals and bryozoans,-22.8 to-25.1‰). Sponges, and polychaete, gastropod and crustacean omnivores exhibited an intermediate dependence on kelp carbon (15 to 40%). Within some taxonomic groups, species exhibited a broad range in isotopic composition which was related to differences in feeding strategies. In the polychaete group alone, δ13C values identified four major feeding habits: deposit-feeders (-18.0‰), omnivores (-20.4‰), predators (-22.2‰) and microalgal herbivores (-23.0‰). Distinct seasonal changes in the δ13C values of several animals indicated an increased dependence on kelp carbon during the dark winter period when phytoplankton were absent. Up to 50% of the body carbon of mysid crustaceans, which are key prey species for birds, fishes and marine mammals, was composed of carbon derived from kelp detritus during the ice-covered period.


Phytoplankton Carbon Isotope Polychaete Hydroid Carbon Isotope Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Barnes, R. D.: Invertebrate zoology, 1089 pp. Philadelphia: Saunders College 1980Google Scholar
  2. Barnes, P. W. and E. Reimnitz: Sedimentary processes on arctic shelves off the northern coast of Alaska. In: The coast and shelf of the Beaufort Sea, pp 439–476. Ed. by J. C. Reed and J. E. Slater. Arlington: Arctic Institute of North America 1974Google Scholar
  3. Bedford, A. P. and P. G. Moore: Macrofaunal involvement in the sublittoral decay of kelp debris; the polychaete Platyneries dumerilii (Audouin and Milne-Edwards) (Annelida: Polychaeta). Estuar., cstl Shelf Sci. 20, 117–134 (1985)Google Scholar
  4. Boutton, R. W., W. W. Wong, D. L. Hachey, L. S. Lee, M. P. Cabrera and P. D. Klein: Comparison of quartz and pyrex tubes for combustion of organic samples for stable carbon isotope analysis. Analyt. Chem. 55, 1832–1833 (1983)Google Scholar
  5. Buchanan, D. L. and B. J. Corcoran: Sealed tube combustions for the determination of carbon-14 and total carbon. Analyt. Chem. 31, 1635–1638 (1959)Google Scholar
  6. Chapman, A. R. O. and J. E. Lindley: Productivity of Laminaria solidungula J. Ag. in the Canadian High Arctic: a year round study. Proc. 10th int. Seaweed Symp. (Göteborg) 247–252 (1981). (Ed. by T. Levring. Berlin: Walter de Gruyter)Google Scholar
  7. Clarke, W. D.: Mysids of the southern kelp region. Nova Hedwigia 32, 369–380 (1971)Google Scholar
  8. Craig, H.: Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. cosmochim. Acta 12, 133–149 (1957)Google Scholar
  9. Craig, P. C., W. B. Griffiths, S. R. Johnson and D. M. Schell: Trophic dynamics in an arctic lagoon. In: The Alaskan Beaufort Sea; ecosystems and environments, pp 347–380. Ed. by P. W. Barnes, D. Schell and E. Reimnitz. Orlando: Academic Press 1984Google Scholar
  10. DeNiro, M. J. and S. Epstein: Influence of diet on the distribution of carbon isotopes in animals. Geochim. cosmochim. Acta 42, 495–506 (1978)Google Scholar
  11. Des Marais, D. J. and J. M. Hayes: Tube cracker for opening glass-sealed ampules under vacuum. Analyt. Chem. 48, 1651–1652 (1976)Google Scholar
  12. Dieckman, G. S.: Aspects of the ecology of Laminaria pallida (Grev.) J. Ag. off the Cape Peninsula (South Africa). I. Seasonal growth. Botanica mar. 23, 579–585 (1980)Google Scholar
  13. Dunton, K. H.: An annual carbon budget for an arctic kelp community. In: The Alaskan Beaufort Sea; ecosystems and environments, pp 311–326. Ed. by P. W. Barnes, D. M. Schell and E. Reimnitz. Orlando: Academic Press 1984Google Scholar
  14. Dunton, K. H.: Trophic dynamics in marine nearshore systems of the Alaskan High Arctic, 247 pp. PhD thesis, University of Alaska-Fairbanks 1985Google Scholar
  15. Dunton, K. H., E. Reimnitz and S. Schonberg: An arctic kelp community in the Alaskan Beaufort Sea. Arctic 35, 465–484 (1982)Google Scholar
  16. Dunton, K. H. and D. M. Schell: Seasonal carbon budget and growth of Laminaria solidungula in the Alaskan High Arctic. Mar. Ecol. Prog. Ser. (In press) (1986)Google Scholar
  17. Fauchald, K. and P. A. Jumars: The diet of worms; a study of polychaete feeding guilds. Oceanogr. mar. Biol. A. Rev. 17, 193–284 (1979)Google Scholar
  18. Fretter, V. and A. Graham: British prosobranch molluses, 755 pp. London: The Ray Society 1962Google Scholar
  19. Fry, B.: Fish and shrimp migrations in the northern Gulf of Mexico analyzed using stable C, N and S isotope ratios. Fish. Bull. U.S. 81, 789–801 (1984a)Google Scholar
  20. Fry, B.: 13C/12C ratios and the trophic importance of algae in Florida Syringodium filiforme seagrass meadows. Mar. Biol. 79, 11–19 (1984b)Google Scholar
  21. Fry, B., R. Lutes, M. Northam, P. L. Parker and J. Ogden: A 13C/12C comparison of food webs in Caribbean seagrass meadows and coral reefs. Aquat. Bot. 14, 389–398 (1982)Google Scholar
  22. Fry, B. and P. L. Parker: Animal diet in Texas seagrass meadoss: δ13C evidence for the importance of benthic plants. Estuar. cstl mar. Sci. 8, 499–509 (1979)Google Scholar
  23. Fry, B., R. S. Scalan and P. L. Parker: 13C/12C ratios in marine food webs of the Torres Strait, Queensland. Austr. J. mar. Freshwat. Res. 34, 707–716 (1983)Google Scholar
  24. Fry, B. and E. B. Sherr: δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contr. mar. Sci. Univ. Tex. 27, 13–47 (1984)Google Scholar
  25. Gibbs, R. J.: Effect of combustion temperature and time, and of the oxidation agent used in organic carbon and nitrogen analyses of sediments and dissolved organic material. J. sedim. Petrol. 47, 547–550 (1977)Google Scholar
  26. Hackney, C. T. and E. B. Haines: Stable carbon isotope composition of fauna and organic matter collected in a Mississippi estuary. Estuar. cstl mar. Sci. 10, 703–708 (1980)Google Scholar
  27. Haines, E. B.: Relation between the stable carbon isotope composition of fiddler crabs, plants and soils in a salt marsh. Limnol. Oceanogr. 21, 880–883 (1976a)Google Scholar
  28. Haines, E. B.: Stable carbon isotope ratios in the biota, soils and tidal water of a Georgia salt marsh. Estuar. cstl mar. Sci. 4, 609–616 (1976b)Google Scholar
  29. Haines, E. B.: The origins of detritus in Georgia salt marsh estuaries. Oikos 29, 254–260 (1977)Google Scholar
  30. Haines, E. B. and C. L. Montague: Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology 60, 48–56 (1979)Google Scholar
  31. Hughes, E. H. and E. B. Sherr: Subtidal food webs in a Georgia estuary; δ13C analysis. J. exp. mar. Biol. Ecol. 67, 227–242 (1983)Google Scholar
  32. Incze, L. S., L. M. Mayer, E. B. Sherr and S. A. Macko: Carbon inputs to bivalve mollusks; a comparison of two estuaries. Can J. Fish. aquat. Sciences 39, 1348–1352 (1982)Google Scholar
  33. Johnston, C. S., R. G. Jones and R. D. Hunt: A seasonal carbon budget for a laminarian population in a Scottish sea-loch. Helgoländer wiss. Meeresunters. 30, 527–545 (1977)Google Scholar
  34. Kitting, C. L., B. Fry and M. D. Morgan: Detection of inconspicuous epiphytic algae supporting food webs in seagrass meadows. Oecologia (Berl.) 62, 145–149 (1984)Google Scholar
  35. Lucas, M. I., R. C. Newell and B. Velimirov: Heterotrophic utilisation of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida). 2. Differential utilisation of dissolved organic components from kelp mucilage. Mar. Ecol. Prog. Ser. 4, 43–55 (1981)Google Scholar
  36. Macko, S. A., M. L. F. Estep and W. Y. Lee: Stable hydrogen isotope analysis of foodwebs on laboratory and field populations of marine amphipods. J. exp. mar. Biol. Ecol. 72, 243–249 (1983)Google Scholar
  37. Mann, K. H.: Seaweeds: their productivity and strategy for growth. Science, N.Y. 182, 975–981 (1973)Google Scholar
  38. Mann, K. H.: Decomposition of marine macrophytes. In: The role of terrestrial and aquatic organisms in decomposition processes, pp 247–267. Ed. by J. M. Anderson and A. Macfadyen. Oxford: Blackwell Scientific Publications 1975Google Scholar
  39. McConnaughey, T. and C. P. McRoy: 13C label identifies eelgrass (Zostera marina) carbon in an Alaskan estuarine food web. Mar. Biol. 53, 263–269 (1979)Google Scholar
  40. Minagawa, M., D. A. Winter and I. R. Kaplan: Comparison of Kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic matter. Analyt. Chem. 56, 1859–1861 (1984)Google Scholar
  41. Mohr, J. L., N. J. Wilimovsky and E. Y. Dawson: An arctic Alaskan kelp bed. Arctic 10, 45–52 (1957)Google Scholar
  42. Morris, R. H., D. P. Abbott and E. C. Haderlie: Intertidal invertebrates of California, 690 pp. Stanford: Stanford University Press 1980Google Scholar
  43. Mullin, M. M., G. H. Rau and R. W. Eppley: Stable nitrogen isotopes in zooplankton; some geographic and temporal variations in the North Pacific. Limnol. Oceanogr. 29, 1267–1273 (1984)Google Scholar
  44. Newell, R. C.: The biological role of detritus in the marine environment. In: Flows of energy and materials in marine ecosystems, pp 317–343. Ed by M. J. R. Fasham. New York: Plenum Press 1984Google Scholar
  45. Newell, R. C. and J. G. Field: The contribution of bacteria and detritus to carbon and nitrogen flow in a benthic community. Mar. Biol. Lett. 4, 23–26 (1983)Google Scholar
  46. Newell, R. C., J. G. Field and C. L. Griffiths: Energy balance and significance of micro-organisms in a kelp bed community. Mar. Ecol. Prog. Ser. 8, 103–113 (1982)Google Scholar
  47. Newell, R. C., M. I. Lucas, B. Velimirov and L. J. Seiderer: Quantitative significance of dissolved organic losses following fragmentation of kelp (Ecklonia maxima and Laminaria pallida). Mar. Ecol. Prog. Ser. 2, 45–59 (1980)Google Scholar
  48. Pearce, J. B. and G. Thorson: The feeding and reproductive biology of the red whelk, Neptunea antiqua (L.). (Gastropoda, Prosobranchia). Ophelia 4, 277–314 (1967)Google Scholar
  49. Peterson, B. J., R. W. Howarth and R. H. Garritt: Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science, N. Y. 227, 1361–1363 (1985)Google Scholar
  50. Reiswig, H. M.: Particle feeding in natural populations of three marine demosponges. Biol. Bull. mar. biol. Lab., Woods Hole 141, 568–591 (1971)Google Scholar
  51. Robinson, J. D., K. H. Mann and J. A. Novisky: Conversion of the particulate fraction of seaweed detritus to bacterial biomass. Limnol. Oceanogr. 27, 1072–1079 (1982)Google Scholar
  52. Schell, D. M.: Carbon-13 and carbon-14 abundances in Alaskan aquatic organisms; delayed production from peat in Arctic food webs. Science, N. Y. 219, 1068–1071 (1983)Google Scholar
  53. Schell, D. M., P. J. Ziemann, D. M. Parrish, K. H. Dunton and E. J. Brown: Food web and nutrient dynamics in nearshore Alaska Beaufort Sea waters. In: Outer continental shelf environmental assessment program, final report, Vol 25, pp 327–499. Boulder, Colorado: National Oceanic and Atmospheric Administration 1984Google Scholar
  54. Schwinghamer, P., F. C. Tan and D. C. Gordon, Jr.: Stable carbon isotope studies in Pecks Cove mudflat ecosystem in the Cumberland Basin, Bay of Fundy. Can. J. Fish. aquat. Sciences 40 (Suppl. 1), 262–272 (1983)Google Scholar
  55. Simenstad, C. A. and R. C. Wissmar: δ13C evidence of the origins and fates of organic carbon in estuarine and nearshore food webs. Mar. Ecol. Prog. Ser. 22, 141–152 (1985)Google Scholar
  56. Sofer, Z.: Preparation of carbon dioxide for stable carbon isotope analysis of petroleum fractions. Analyt. Chem. 52, 1389–1391 (1980)Google Scholar
  57. Stephenson, R. L. and R. L. Lyon: Carbon-13 depletion in an estuarine bivalve; detection of marine and terrestrial food sources. Oecologica (Berl.) 55, 110–113 (1982)Google Scholar
  58. Stephenson, R. L., F. C. Tan and K. H. Mann: Stable carbon isotope variability in marine macrophytes and its implications for food web studies. Mar. Biol. 81, 223–230 (1984)Google Scholar
  59. Stuart, V., J. G. Field and R. C. Newell: Evidence for the absorption of kelp detritus by the ribbed mussel Aulocomya ater using a new 51Cr-labelled microsphere technique. Mar. Ecol. Prog. Ser. 9, 263–271 (1982a)Google Scholar
  60. Stuart, V., M. I. Lucas and R. C. Newell: Heterotrophic utilisation of particulate matter from the kelp Laminaria pallida. Mar. Ecol. Prog. Ser. 4, 337–348 (1981)Google Scholar
  61. Stuart, V., R. C. Newell and M. I. Lucas: Conversion of kelp debris and faecal material from the mussel Aulocomya ater by marine microorganisms. Mar. Ecol. Prog. Ser. 7, 47–57 (1982b)Google Scholar
  62. Suchanek, T. H., S. L. Williams, J. C. Ogden, D. K. Hubbard and I. P. Gill: Utilization of shallow-water seagrass detritus by Caribbean deep-sea macrofauna; δ13C evidence. Deep-Sea Res. 32, 201–214 (1985)Google Scholar
  63. Tenore, K. R.: Utilization of aged detritus derived from different sources by the polychaete Capitella capitata. Mar. Biol. 44, 51–55 (1977a)Google Scholar
  64. Tenore, K. R.: Growth of Capitella capitata cultured on various levels of detritus derived from different sources. Limnol. Oceanogr. 22, 936–941 (1977b)Google Scholar
  65. Tenore, K. R.: Organic nitrogen and caloric content of detritus. Estuar., cstl Shelf Sci. 12, 39–47 (1981)Google Scholar
  66. Toimil, L. J. and J. M. England: Environmental effects of gravel island construction, BF-37, Stefansson Sound, Alaska, 62 pp. Exxon Company, U.S.A., Final Report. Novato, Calif.: Harding-Lawson Associates 1982Google Scholar
  67. Valentine, J. W.: Evolutionary paleoecology of the marine biosphere, 511 pp. Englewood Cliffs: Prentice-Hall 1973Google Scholar
  68. Winston, J. E.: Feeding in marine bryozoans. In: Biology of bryozoans, pp 233–271. Ed. by R. M. Woollacott and R. L. Zimmer. New York: Academic Press 1977Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • K. H. Dunton
    • 1
  • D. M. Schell
    • 1
  1. 1.Water Research Center, Institute of Northern EngineeringUniversity of Alaska-FairbanksFairbanksUSA

Personalised recommendations