Skip to main content
Log in

A high amount of satellite DNA in the genome of Lupinus angustifolius L.

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Embryo DNA, isolated from ungerminated seeds of Lupinus angustifolius L., contains an exceptionally high amount of guanine-cytosine-rich satellite DNA. The thermal denaturation curve of total embryo DNA is biphasic with an inflexion point at 62% denaturation, indicating the presence of satellite DNA. The satellite fraction could be separated from the mainband DNA by three successive preparative CsCl-gradient centrifugations. The densities of the DNA fractions are 1.7045 g cm-3 and 1.6925 g cm-3, respectively. The percentages of guanine-cytosine calculated from these densities are comparable to the percentages of GC calculated from the melting temperatures. Finally, ressociation studies prove that foldback DNA and highly repeated sequences are much more frequent in the satellite DNA fraction than in the mainband DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C o t :

the product of the DNA concentration (mol nucleotides l-1) and the time (s) of incubation in a DNA reassociation reaction

GC:

guanine-cytosine

np:

nucleotide parirs

ΔT :

temperature interval between 16 and 84% denaturation

References

  • Barlow, P.W. (1976) The relationship of the dispersion phase of chromocentric nuclei in the mitotic cycle to DNA synthesis. Protoplasma 90, 381–382

    Google Scholar 

  • Bendich, A.J. (1977) Dispersal of satellite DNA sequences throughout the muskmelon genome and the nature of families of repeated DNA sequences in plants. In: The moleculal biology of the mammalian genetic apparatus, pp. 63–68, P.O.P. Ts'o ed. Academic Press, New York

    Google Scholar 

  • Bennett, M.D., Smith, J.B. (1976) Nuclear DNA amounts in angiosperms. Phil. Trans. R. Soc. London B 274, 227–274

    Google Scholar 

  • Britten, R.J., Kohne, D.E. (1966) Nucleotide sequence repetition in DNA. Yearbook of Carnegie Institute of Washington 65, 78–106

    Google Scholar 

  • Broekaert, D., Van Oostveldt, P., Van Parijs, R. (1979) Differential DNA replication in Pisum sativum L. Seedlings at the onset of germination. Biochem. Physiol. Pflanz. 174, 629–640

    Google Scholar 

  • Broekaert, D., Van Parijs, R. (1973) Histological observations and histophotometric DNA measurements in wounded tissues of Pisum sativum L. infected with Agrobacterium tumefaciens. J. Exp. Bot. 24, 820–827

    Google Scholar 

  • Burton, K. (1956) A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of the deoxyribonucleic acid. Biochem. J. 62, 315–323

    Google Scholar 

  • Cairns, J. (1963) The chromosome of Escherichia coli. Cold Spring Harbor Symp. Quant. Biol. 28, 43–46

    Google Scholar 

  • Coucke, P., Van Parijs, R. (1972) Isolation of chromatin, histones and nonhistone proteins from plant tissues. Arch. Int. Physiol. Biochim. 80, 956–957

    Google Scholar 

  • De Ley, J. (1970) Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101, 738–754

    Google Scholar 

  • Gillis, M., De Ley, J., De Cleene, M. (1970) The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur. J. Biochem. 12, 143–153

    Google Scholar 

  • Green, B.R., Gordon, M.P. (1967) The satellite DNA's of some higher plants. Biochim. Biophys. Acta 145, 378–390

    Google Scholar 

  • Ingle, J., Timmis, J.M., Sinclair, J. (1975) The relationship between satellite DNA, ribosomal DNA gene redundancy and genome size in plants. Plant Physiol. 55, 495–501

    Google Scholar 

  • John, B., Miklos, G.L.C. (1979) Functional aspects of satellite DNA and heterochromatin. Int. Rev. Cytol. 58, 1–114

    Google Scholar 

  • Kell, G.S. (1975–1976) Volume properties of ordinary water. In: Handbook of chemistry and physics, 36th edn, p. F5. R.C. Weast, ed. CRC Press, Cleveland, O

    Google Scholar 

  • Lamppa, G.K., Bendich, A.J. (1979) Changes in chloroplast DNA levels during development of pea (Pisum sativum). Plant Physiol. 64, 126–130

    Google Scholar 

  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275

    Google Scholar 

  • Marmur, J. (1961) A procedure for the isolation of DNA from microoganisms. J. Mol. Biol. 3, 208–218

    Google Scholar 

  • McCarthy, B.J., Farquehar, M.M. (1972) Role of change of DNA in evolution. In: Evolution of genetic systems. Brookhaven Symposium in Biology 23, pp. 1–43, Smith, M.M., ed. Gordon and Breach, New York London

    Google Scholar 

  • McDonnell, M.W., Simon, M.N., Studier, F.W. (1977) Analysis of restiction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J. Mol. Biol. 110, 119–149

    Google Scholar 

  • Nagl, W. (1974a) Mitotic cycle time in perennial and annual plants with various amounts of DNA and heterochromatin. Dev. Biol. 39, 342–346

    Google Scholar 

  • Nagl, W. (1974b) Role of heterochromatin in the control of cell cycle duration. Nature (London) 249, 53–54

    Google Scholar 

  • Nagl, W. (1979) Nuclear ultrastructure: condensed chromatin in plants in species specific (karyotypical) but not tissue specific (functional). Protoplasma 100, 53–71

    Google Scholar 

  • Nagl, W., Fusenig, H.P. (1979) Types of chromatin organization in plant nuclei. In: Genome and chromatin: organization, evolution and function pp. 221–234, Magl, W., Hemleben, V., Ehrendorfer, F., eds. Springer, Wien New York

    Google Scholar 

  • Ranjekar, P.K., Pallota, D., Lafontaine, J.G. (1978) Analysis of plant genomes, IV. Isolation and characterization of satellite components from two dicotyledons cucumber (Cucumis sativus) and radish (Raphanus sativus). Can. J. Biochem. 56, 808–815

    Google Scholar 

  • Schildkraut, C.L., Marmur, J., Doty, P. (1962) Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4, 430–443

    Google Scholar 

  • Skinner, D. (1977) Satellite DNA's. Bioscience 27, 790–796

    Google Scholar 

  • Sunderland, N., McLeish, J. (1961) Nucleic acid content and concentration in root cells of higher plants. Exp. Cell Res. 24, 541–554

    Google Scholar 

  • Van Goethem, G., Broekaert, D., Van Oostveldt, P., Van Parijs, R. (1978) Characterization of foldback sequences in Lupinus angustifolius nuclear DNA. Arch. Int. Physiol. Biochim. 86, 462–464

    Google Scholar 

  • Van Oostveldt, P., Van Parijs, R. (1976) Underreplication of repetitive DNA in polyploid cells of Pisum sativum. Exp. Cell Res. 98, 210–221

    Google Scholar 

  • Van Oostveldt, P., Van Goethem, G., Van Parijs, R. (1976) Effect of light on cell elongation, nucleic acid and protein synthesis in hypocotyls of Lupinus angustifolius. Planta 129, 259–263

    Google Scholar 

  • Wells, R., Ingle, J. (1970) The constancy of the buoyant density of chloroplast and mitochondrial DNA in a range of higher plants. Plant Physiol. 46, 178–179

    Google Scholar 

  • Yunis, J.J., Yasmineh, W.G. (1971) Satellite DNA in constitutive heterochromatin of the Guinea pig. Science 174, 1200–1209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strubbe, K., Van Oostveldt, P., Broekaert, D. et al. A high amount of satellite DNA in the genome of Lupinus angustifolius L.. Planta 155, 238–243 (1982). https://doi.org/10.1007/BF00392722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392722

Key words

Navigation