Skip to main content
Log in

Glucose uptake by symbiotic Chlorella in the green-hydra symbiosis

  • Published:
Planta Aims and scope Submit manuscript

Abstract

There is a correlation between the ability of symbiotic Chlorella algae to take up glucose and their survival in green hydra grown in continuous darkness. Although normal symbionts of European green hydra, which persist at a stable level in dark-grown animals, possessed no detectable constitutive ability to take up glucose when grown in light, uptake was induced after incubation in a medium containing glucose. Further, symbionts isolated from hydra grown in darkness for two weeks had acquired a constitutive uptake ability. Neither NC64A nor 3N813A strains of algae, in artificial symbiosis with hydra, persisted in dark-grown animals, and they showed little or no uptake ability, although in culture NC64A possessed both constitutive and inducible glucose-uptake mechanisms. In contrast, mitotic indices in all three types of algae in symbiosis with hydra increased after host feeding, indicating that the factor which stimulates algal cell division is not identical to the substrate utilised during heterotrophic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E/E:

normal Hydra-Chlorella symbiosis

E/NC, E/3N:

artificial symbioses between Hydra and Chlorella strains NC64A and 3N813A, respectively

3-OMG:

3-O-methyl-D-glucose

SDS:

sodium dodecyl sulfate

References

  • Cernichiari, E., Muscatine, L., Smith, D.C. (1969) Maltose excretion by the symbiotic algae of Hydra viridis. Proc. R. Soc. London Ser. B. 173, 557–576

    Google Scholar 

  • Cook, C.B. (1972) Benefit to symbiotic zoochlorellae from feeding by green hydra. Biol. Bull. 142, 236–242

    Google Scholar 

  • Cook, C.B., Kelty, M.O. (1982) Glycogen, protein, and lipid content of green, aposymbiotic, and nonsymbiotic hydra during starvation. J. Exp. Zool. 222, 1–9

    Google Scholar 

  • David, C.N. (1973) A quantitative method for maceration of hydra tissue. Wilhelm Roux' Arch. Entwicklungsmech. Org. 171, 259–268

    Google Scholar 

  • Decker, M., Tanner, W. (1972) Respiratory increase and active hexose uptake of Chlorella vulgaris. Biochim. Biophys. Acta. 266, 661–669

    Google Scholar 

  • Douglas, A.E., Smith, D.C. (1983) The cost of symbionts to the host in the green hydra symbiosis. In: Endocytobiology, endosymbiosis and cell biology, pp. 631–648, Schwemmler, W., Schenk, H.E.A., eds. Walter de Gruyter, Berlin

    Google Scholar 

  • Douglas, A.E., Smith, D.C. (1984) The green hydra symbiosis. VII. Mechanisms in symbiont regulation. Proc. R. Soc. London Ser. B. 221, 291–319

    Google Scholar 

  • Droop, M.R. (1974) Heterotrophy of carbon. In: Algal physiology and biochemistry, pp. 530–559, Stewart, W.D.P. ed. Blackwell Scientific Publications

  • Fenzl, F., Decker, M., Haass, D., Tanner, W. (1977) Characterization and partial purification of an inducible protein related to hexose proton cotransport in Chlorella vulgaris. Eur. J. Biochem. 72, 509–514

    Google Scholar 

  • Haass, D., Tanner, W. (1974) Regulation of hexose transport in Chlorella vulgaris. Characteristics of induction and turnover. Plant Physiol. 53, 14–20

    Google Scholar 

  • Hellebust, J.A., Hunglin, Y.I. (1978) Uptake of organic solutes. In: Handbook of phycological methods. Physiological and biochemical methods, pp. 379–388, Hellebust, J.A., Craigie, J.S., eds. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jolley, E., Smith, D.C. (1978) The green hydra symbiosis. I. Isolation, culture and characteristics of the Chlorella symbiont of ‘European’ Hydra viridis. New Phytol. 81, 637–645

    Google Scholar 

  • Kessler, E., Langer, W., Ludwig, I., Wiechmann, H. (1963) Bildung von Sekundaer-Carotinoiden bei Stickstoffmangel und Hydrogenase-Activataet als taxonomische Merkmale in der Gattung Chlorella. In: Studies on microalgae and photosynthetic bacteria, pp. 7–20, Japanese Society of Plant Physiology, University of Tokyo Press, Tokyo

    Google Scholar 

  • Komor, E., Tanner, W. (1971) Characterization of the active hexose transport system of Chlorella vulgaris. Biochim. Biophys. Acta. 241, 170–179

    Google Scholar 

  • Lenhoff, H.M., Brown, R. (1970) Mass culture of hydra: an improved method and its application to other aquatic invertebrates. Lab. Anim. 4, 139–154

    Google Scholar 

  • McAuley, P.J. (1981) Ejection of algae in the green hydra symbiosis. J. Exp. Zool. 127, 23–31

    Google Scholar 

  • McAuley, P.J. (1985a) The cell cycle of symbiotic Chlorella. I. The relationship between host feeding and algal cell growth and division. J. Cell Sci. 77, 225–239

    Google Scholar 

  • McAuley, P.J. (1985b) The cell cycle of symbiotic Chlorella. II. The effect of continuous darkness. J. Cell Sci. 77, 241–253

    Google Scholar 

  • McAuley, P.J. (1986) Isolation of viable uncontaminated symbiotic Chlorella from green hydra. Limnol. Oceangr. 31, 222–224

    Google Scholar 

  • Mews, L. (1980) The green hydra symbiosis. III. The biotrophic transport of carbohydrate from alga to animal. Proc. R. Soc. London Ser. B. 209, 377–401

    Google Scholar 

  • Mews, L., Smith, D.C. (1982) The green hydra symbiosis. VI. What is the role of maltose transfer from alga to animal? Proc. R. Soc. London Ser. B. 216, 397–413

    Google Scholar 

  • Muscatine, L., Karakashian, S.J., Karakashian, M.W. (1967) Soluble extracellular products of algae symbiotic with a ciliate, sponge and a mutant hydra. Comp. Biochem. Physiol. 20, 1–12

    Google Scholar 

  • Muscatine, L., Lenhoff, H.M. (1965) Symbiosis of hydra and algae. I. Effects of some environmental cations on growth of symbiotic and aposymbiotic hydra. Biol. Bull. 128, 415–424

    Google Scholar 

  • Pardy, R.L. (1974) Some factors affecting the growth and distribution of the algal endosymbionts of Hydra viridis. Biol. Bull. 147, 105–118

    Google Scholar 

  • Sauer, N., Tanner, W. (1983) Partial purification and characterization of inducible transport proteins in Chlorella. Z. Pflanzenphysiol. 114, 367–375

    Google Scholar 

  • Tanner, W. (1969) Light driven active uptake of 3-O-Methylglucose via an inducible hexose uptake system of Chlorella. Biochem. Biophys. Res. Comm. 36, 278–283

    Google Scholar 

  • Tanner, W., Grunes, R., Kandler, O. (1970) Spezifität und Turnover des induzierbaren Hexose-Aufnahmesystems von Chlorella. Z. Pflanzenphysiol. 62, 376–386

    Google Scholar 

  • Thorington, G., Margulis, L. (1981) Hydra viridis: Transfer of metabolites between hydra and symbiotic algae. Biol. Bull. 160, 175–188

    Google Scholar 

  • Weis, D.S. (1978) Correlation of infectivity and concanavalin A agglutinability of algae exsymbiotic from Paramecium bursaria J. Protozool. 25, 366–370

    Google Scholar 

  • Wilkerson, F.P. (1981) Bacterial symbionts on green hydra and their effect on phosphate uptake. Microb. Ecol. 6, 85–92

    Google Scholar 

  • Yoder, M.C. (1926) The occurrence, storage and distribution of glycogen in Hydra viridis and Hydra fusca, J. Exp. Zool. 44, 475–483

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McAuley, P.J. Glucose uptake by symbiotic Chlorella in the green-hydra symbiosis. Planta 168, 523–529 (1986). https://doi.org/10.1007/BF00392272

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392272

Key words

Navigation