Skip to main content
Log in

Tissue-distribution of secondary phenolic biosynthesis in developing primary leaves of Avena sativa L.

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Primary leaves of oats (Avena sativa L.) have been used to study the integration of secondary phenolic metabolism into organ differentiation and development. In particular, the tissue-specific distribution of products and enzymes involved in their biosynthesis has been investigated. C-Glucosylflavones along with minor amounts of hydroxycinnamic-acid esters constitute the soluble phenolic compounds in these leaves. In addition, considerable amounts of insoluble products such as lignin and wall-bound ferulic-acid esters are formed. The tissue-specific activities of seven enzymes were determined in different stages of leaf growth. The rate-limiting enzyme of flavonoid biosynthesis in this system, chalcone synthase, together with chalcone isomerase (EC 5.5.1.6) and the terminal enzymes of the vitexin and isovitexin branches of the pathway (a flavonoid O-methyltransferase and an isovitexin arabinosyltransferase) are located in the leaf mesophyll. Since the flavonoids accumulate predominantly (up to 70%) in both epidermal layers, an intercellular transport of products is postulated. In contrast to the flavonoid enzymes, L-phenylalanine ammonia-lyase (EC 4.3.1.5), 4-coumarate: CoA ligase (EC 6.2.1.12), and S-adenosyl-L-methionine: caffeate 3-O-methyltransferase (EC 2.1.1.-), all involved in general phenylpropanoid metabolism, showed highest activities in the basal leaf region as well as in the epidermis and the vascular bundles. We suggest that these latter enzymes participate mainly in the biosynthesis of non-flavonoid phenolic products, such as lignin in the xylem tissue and wall-bound hydroxycinnamic acid-esters in epidermal, phloem, and sclerenchyma tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHI:

chalcone isomerase

CHS:

chalcone synthase

4CL:

4-coumarate: CoA ligase

CMT:

S-adenosyl-L-methionine:caffeate 3-O-methyltransferase

FMT:

S-adenosyl-L-methionine:vitexin 2″-O-rhamnoside 7-O-methyltransferase

HPLC:

high-performance liquid chromatography

IAT:

uridine 5′-diphosphate L-arabinose:isovitexin 2″-O-arabinosyltransferase

PAL:

L-phenylalanine ammonia-lyase

References

  • Boland, M.J., Wong, E. (1975) Purification and kinetic properties of chalcone-flavanone isomerase from soya bean. Eur. J. Biochem. 50, 383–389

    Google Scholar 

  • Britsch, L., Heller, W., Grisebach, H. (1981) Conversion of flavanone to flavone, dihydroflavonol and flavonol with an enzyme system from cell cultures of parsley. Z. Naturforsch. Teil C 36, 742–750

    Google Scholar 

  • Bruinsma, J. (1961) A comment on the spectrophotometric determination of chlorophyll. Biochim. Biophys. Acta 52, 576–578

    Google Scholar 

  • Chopin, J., Dellamonica, G., Bouillant, M.L., Besset, A., Popovici, G., Weissenböck, G. (1977) C-Glycosylflavones from Avena sativa. Phytochemistry 16, 2041–2043

    Google Scholar 

  • Dahlbender, B., Strack, D. (1984) Enzymatic synthesis of 1,2-di-sinapoylglucose from 1-sinapoylglucose by a protein preparation from cotyledons of Raphanus sativus grown in the dark. Z. Pflanzenphysiol. 116, 375–379

    Google Scholar 

  • Effertz, B., Weissenböck, G. (1978) 14C-Phenylalanine incorporation in C-glycosylflavones of developing primary oat leaves. Z. Pflanzenphysiol. 92, 319–326

    Google Scholar 

  • Effertz, B., Weissenböck, G. (1980) Tissue specific variation of C-glycosylflavone patterns in oat leaves as influenced by the environment. Phytochemistry 19, 1669–1672

    Google Scholar 

  • Feige, G.B., Gimmler, H., Jeschke, W.D., Simonis, H. (1969) Eine Methode zur dünnschichtchromatographischen Auftrennung von 14C-und 32P-markierten Stoffwechselprodukten. J. Chromatogr. 41, 80–90

    Google Scholar 

  • Forkmann, G., Heller, W., Grisebach, H. (1980) Anthocyanin biosynthesis in flowers of Matthiola incana. Flavanone 3-and flavonoid 3′-hydroxylases. Z. Naturforsch. Teil C 35, 691–695

    Google Scholar 

  • Fry, S.C. (1983) Feruloylated pectins from the primary cell wall: their structure and possible functions. Planta 157, 111–123

    Google Scholar 

  • Fuisting, K. (1981) Lokalisation der Chalkon-Flavanon-Synthase und der UDP-Arabinose: Isovitexin-2″-O-Arabinosyltransferase in den Primärbättern von Avena sativa L.Ph.D. Thesis, Univ. Köln

  • Fuisting, K., Weissenböck, G. (1980) “Flavanone synthase” in oat primary leaves. Time course and tissue distribution at the tissue and subcellular level. Z. Naturforsch. Teil C 35, 973–977

    Google Scholar 

  • Goodwin, P.B. (1983) Molecular size limit for movement in the symplast of Elodea canadensis leaf. Planta 157, 124–130

    Google Scholar 

  • Grisebach, H. (1979) Selected topics in flavonoid biosynthesis. In: Biochemistry of plant phenolics, pp. 221–248, Swain, T., Harborne, J.B., Van Sumere, C.F., eds.. Plenum Press, New York London

    Google Scholar 

  • Grisebach, H. (1981) Lignins. In: The biochemistry of plants, vol. 7: Secondary plant products, pp. 457–478, Stumpf, P.K., Conn, E.E., eds. Academic Press, New York London

    Google Scholar 

  • Gross, G.G. (1983) Synthesis of mono-, di- and trigalloyl-β-D-glucose by β-glucogallin-dependent galloyltransferases from oak leaves. Z. Naturforsch. Teil C 38, 519–523

    Google Scholar 

  • Gross, G.G., Zenk, M.H. (1974) Isolation and properties of hydroxycinnamate: CoA ligase from lignifying tissue of Forsythia. Eur. J. Biochem. 42, 453–459

    Google Scholar 

  • Haas, R., Heinz, E., Popovici, G., Weissenböck, G. (1979) Protoplasts from oat primary leaves as tools for experiments on the compartmentation in lipid and flavonoid metabolism. Z. Naturforsch. Teil C 34, 854–864

    Google Scholar 

  • Hahlbrock, K., Grisebach, H. (1979) Enzymic controls in the biosynthesis of lignin and flavonoids. Annu. Rev. Plant Physiol. 30, 105–130

    Google Scholar 

  • Harborne, J.B., Corner, J.J. (1961) Plant polyphenols. 4. Hydroxycinnamic acid-sugar derivatives. Biochem. J. 81, 242–250

    Google Scholar 

  • Harris, P.J., Hartley, R.D. (1976) Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy. Nature 259, 508–510

    Google Scholar 

  • Harris, P.J., Hartley, R.D. (1980) Phenolic constituents of the cell wall of monocotyledons. Biochem. System Syst. Ecol. 8, 153–160

    Google Scholar 

  • Hartley, R.D., Jones, E.C., Wood, T.M. (1976) Carbohydrates and carbohydrate esters of ferulic acid released from cell walls of Lolium multiflorum by treatment with cellulolytic enzymes. Phytochemistry 15, 305–307

    Google Scholar 

  • Hepler, P.K. (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111, 121–133

    Google Scholar 

  • Hösel, W. (1981) Glycosylation and glycosidases. In: The biochemistry of plants, vol. 7: Secondary plant products, pp. 725–753, Stumpf, P.K., Conn, E.E., eds. Academic Press, New York London

    Google Scholar 

  • Hrazdina, G., Marx, G.A., Hoch, H.C. (1982) Distribution of secondary plant metabolites and their biosynthetic enzymes in pea (Pisum sativum L.) leaves. Plant Physiol. 70, 745–748

    Google Scholar 

  • Hrazdina, G., Wagner, G.J. (1985) Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch. Biochem. Biophys. 237, 88–100

    Google Scholar 

  • Knogge, W., Beulen, C., Weissenböck, G. (1981) Distribution of phenylalanine ammonia-lyase and 4-coumarate: CoA ligase in oat primary leaf tissues. Z. Naturforsch. Teil C 36, 389–395

    Google Scholar 

  • Knogge, W., Weissenböck, G. (1984) Purification characterization, and kinetic mechanism of S-adenosyl-L-methionine: vitexin 2″-O-rhamnoside 7-O-methyltransferase of Avena sativa L. Eur. J. Biochem. 140, 113–118

    Google Scholar 

  • Knogge, W., Weissenböck, G., Strack, D. (1981) Application of liquid chromatography to a study on 4-coumarate: coenzyme A ligase activity. Z. Naturforsch. Teil C 36, 197–199

    Google Scholar 

  • Kolattukudy, P.E. (1980) Cutin, suberin, and waxes. In: The biochemistry of plants, vol. 4: Lipids: structure and function, pp. 571–645, Stumpf, P.K., Conn, E.E., eds. Academic Press, New York London

    Google Scholar 

  • Kolattukudy, P.E. (1981) Structure, biosynthesis, and biodegradation of cutin and suberin. Annu. Rev. Plant Physiol. 32, 539–567

    Google Scholar 

  • Michalczuk, L., Bandurski, R.S. (1980) UDP-glucose: indolacetic acid glucosyl transferase and indolacetyl-glucose: myo-inositol indolacetyl transferase. Biochem. Biophys. Res. Commun. 93, 588–592

    Google Scholar 

  • Moustafa, E., Wong, E. (1967) Purification and properties of chalcone-flavanone isomerase from soya bean seed. Phytochemistry 6, 625–632

    Google Scholar 

  • Overall, R.L., Wolfe, L., Gunning, B.E.S. (1982) Intercellular communication in Azolla roots. I. Ultrastructure of plasmodesmata. Protoplasma 111, 134–150

    Google Scholar 

  • Popovici, G., Weissenböck, G., Bouillant, M.L., Dellamonica, G., Chopin, J. (1977) Isolation and characterization of flavonoids from Avena sativa L. Z. Pflanzenphysiol. 85, 103–115

    Google Scholar 

  • Poulton, J.E. (1981) Transmethylation and demethylation reactions in the metabolism of secondary plant products. In: The biochemistry of plants, vol. 7: Secondary plant products, pp. 667–723, Stumpf, P.K., Conn, E.E., eds. Academic Press, New York London

    Google Scholar 

  • Poulton, J.E., Butt, V.S. (1975) Purification and properties of S-adenosyl-L-methionine: caffeic acid O-methyltransferase from leaves of spinach beet (Beta vulgaris L.). Biochim. Biophys. Acta 403, 301–314

    Google Scholar 

  • Proksch, M., Strack, D., Weissenböck, G. (1981) Incorporation of [14C]phenylalanine and [14C]cinnamic acid into leaf pieces and mesophyll protoplasts from oat primary leaves for studies on flavonoid metabolism at the tissue and cell level. Z. Naturforsch. Teil C 36, 222–233

    Google Scholar 

  • Schröder, J., Heller, W., Hahlbrock, K. (1979) Flavanone synthase: simple and rapid assay for the key enzyme of flavonoid biosynthesis. Plant Sci. Lett. 14, 281–286

    Google Scholar 

  • Spurr, A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–42

    Google Scholar 

  • Stöckigt, J., Zenk, M.H. (1975) Chemical synthesis and properties of hydroxycinnamoyl-coenzyme A derivatives. Z. Naturforsch. Teil C 30, 352–358

    Google Scholar 

  • Stotz, G., Forkmann, G. (1981) Oxidation of flavanones to flavones with flower extracts of Antirrhinum majus (Snapdragon). Z. Naturforsch. Teil C 36, 737–741

    Google Scholar 

  • Stotz, G., Forkmann, G. (1982) Hydroxylation of the B-ring of flavonoids in the 3′-and 5′-position with enzyme extracts from flowers of Verbena hybrida. Z. Naturforsch. Teil C 37, 19–23

    Google Scholar 

  • Strack, D., Meurer, B., Weissenböck, G. (1982) Tissue-specific kinetics of flavonoid accumulation in primary leaves of rye (Secale cereale L.). Z. Pflanzenphysiol. 108, 131–141

    Google Scholar 

  • Strack, D., Knogge, W., Dahlbender, B. (1983) Enzymatic synthesis of sinapine from 1-O-sinapolyl-β-D-glucose and choline by a cell-free system from developing seeds of red radish (Raphanus sativus L. var. sativus). Z. Naturforsch. Teil C 38, 21–27

    Google Scholar 

  • Strack, D., Bokern, M., Berlin, J., Sieg, S. (1984) Metabolic activity of hydroxycinnamic acid glucose esters in cell suspension cultures of Chenopodium rubrum. Z. Naturforsch. Teil C 39, 902–907

    Google Scholar 

  • Tkotz, N., Strack, D. (1980) Enzymatic synthesis of sinapol-L-malate from 1-sinapoylglucose and L-malate by a protein preparation from Raphanus sativus cotyledons. Z. Naturforsch. Teil C 35, 835–837

    Google Scholar 

  • Wallace, J.W., Grisebach, H. (1973) The in vivo incorporation of a flavanone into C-glycosylflavones. Biochim. Biophys. Acta 304, 837–841

    Google Scholar 

  • Wallace, J.W., Mabry, T.J. (1970) The conversion of the 8-C-glycosylflavone vitexin to the 6-isomer, isovitexin, in Lemna minor. Phytochemistry 9, 2133–2135

    Google Scholar 

  • Wallace, J.W., Mabry, T.J., Alston, R.E. (1969) On the biogenesis of flavone O-glycosides and C-glycosides in the Lemnaceae. Phytochemistry 8, 93–99

    Google Scholar 

  • Weissenböck, G. (1975) Aktivitätsverlauf der Phenylalanin-, Tyrosin-Ammonium-Lyase (PAL, TAL) und Chalkon-Flavanon-Isomerase im Vergleich zur C-Glycosylflavon-Akkumulation im wachsenden Hafersproß (Avena sativa L.) bei Belichtung und Dunkelheit. Z. Pflanzenphysiol. 74, 226–254

    Google Scholar 

  • Weissenböck, G., Effertz, B. (1974) Entwicklungs-und lichtabhägige Akkumulation von C-Glykosylflavonen im Haferkeimling (Avena sativa L.). Z. Pflanzenphysiol. 74, 298–326

    Google Scholar 

  • Weissenböck, G., Sachs, G. (1977) On the localization of enzymes related to flavonoid metabolism in sections and tissues of oat primary leaves. Planta 137, 49–52

    Google Scholar 

  • Wiermann, R. (1981) Secondary plant products and cell and tissue differentiation. In: The biochemistry of plans, vol 7: Secondary plant products, pp. 85–116, Stumpf, P.K., Conn, E.E., eds. Academic Press, New York London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knogge, W., Weissenböck, G. Tissue-distribution of secondary phenolic biosynthesis in developing primary leaves of Avena sativa L.. Planta 167, 196–205 (1986). https://doi.org/10.1007/BF00391415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391415

Key words

Navigation