Marine Biology

, Volume 38, Issue 4, pp 373–383 | Cite as

Suspension-feeding and assimilation efficiency in Lanice conchilega (Polychaeta)

  • K. -J. Buhr


In laboratory experiments, measurements of ingested ration, assimilated ration and assimilation efficiency in the polychaete Lanice conchilega (Pallas) were carried out at 12°C and at a food concentration of 40x106 cells of Dunaliella marina/l. Over periods of 20 to 46 days, the ingested ration was determined photometrically by the continous automatic recording apparatus described by Winter (1973). The assimilated ration was calculated from the calorific content of the food ingested minus the calorific content of the faeces produced. Within the range of body size investigated (1.3 to 35.0 mg dry-tissue weight), the food intake (=filtration rate=F) was found to be a linear function of body size (W) according to the equation F=0.88 W0.32. The daily food intake-expressed as percentage of dry-tissue weight-decreased from 35.7 to 3.9% with increasing body size. The assimilation efficiency was found to vary between 70.6 and 77.2% and showed no significant correlation with body size. The absolute amounts of food retained from suspension and the assimilation efficiencies calculated for L. conchilega are within the range typical for obligatory suspension-feeding organisms. This implies that L. conchilega is capable of completely replacing deposit-feeding by suspension-feeding.


Filtration Food Intake Body Size Assimilation Laboratory Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Banse, K., C.P. Falls and L.A. Hobson: A gravimetric method for determining suspended matter in sea-water using Millipore filters. Deep-Sea Res. 10, 639–642 (1963)Google Scholar
  2. Blegvad, H.: Food and conditions of nourishment among the communities of invertebrate animals on or in the sea-bottom in Danish waters. Rep. Dan. biol. Stn 22, 41–78 (1914)Google Scholar
  3. Boyd, C.E. and C.P. Goodyear: Nutritive quality of food in ecological systems. Arch. Hydrobiol. 69, 256–270 (1971)Google Scholar
  4. Conover, R.J.: Assimilation of organic matter by zooplankton. Limnol. Oceanogr. 11, 338–345 (1966a)Google Scholar
  5. — Factors affecting the assimilation of organic matter by zooplankton and the question of superfluous feeding. Limnol. Oceanogr. 11, 346–354 (1966b)Google Scholar
  6. Crisp, D.J.: Energy flow measurements. In: Methods for the study of marine benthos, pp 197–280. Ed. by N.A. Holme and A.D. McIntyre. Oxford and Edinburgh: Blackwell Scientific Publications 1971. (IBP Handbook No. 16)Google Scholar
  7. Cummins, K.W. and J.C. Wuycheck: Caloric equivalents for investigations in ecological energetics. Mitt. int. Verein. theor. angew. Limnol. 18, 1–158 (1971)Google Scholar
  8. Dales, R.P.: Some quantitative aspects of feeding in sabellid and serpulid fan worms. J. mar. biol. Ass. U.K. 36, 309–316 (1957)Google Scholar
  9. — Observations on the respiration of the sabellid polychaete Schizobranchia insignis. Biol. Bull. mar. biol. Lab., Woods Hole 121, 82–91 (1961)Google Scholar
  10. Deutscher Wetterdienst, Seewetteramt: Meteorelogische Beobachtungen von deutschen Feuerschiffen der Nord-und Ostsee (Bundesrepublik), 1953–1961. Deutscher Wetterdienst, Seewetteramt Hamburg. In: Einzelveröffentlichungen 13, 15, 19, 22, 32, 35, 36, 42 und 45 (1957–1965)Google Scholar
  11. Edwards, R.R.C.: Production ecology of two Caribbean marine ecosystems. II. Metabolism and energy flow. Estuar. cstl mar. Sci. 1, 319–333 (1973)Google Scholar
  12. Fenchel, T., L.H. Kofoed and A. Lappalainen: Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia ulvae. Mar. Biol. 30, 119–128 (1975)Google Scholar
  13. Fuji, A. and M. Hashizume: Energy budget for a Japanese common scallop, Patinopecten yessoensis (Jay) in Mutsu Bay. Bull. Fac. Fish. Hokkaido Univ. 25, 7–19 (1974)Google Scholar
  14. Gerlach, S.A., D.K. Ekstrøm and P.B. Eckardt: Filter feeding in the hermit crab, Pagurus bernhardus. Oecologia (Berl.) (In press). (1976)Google Scholar
  15. Goerke, H.: Die Ernährungsweise der Nereis-Arten (Polychaeta, Nereidae) der deutschen Küsten. Veröff. Inst. Meeresforsch. Bremerh. 13, 1–50 (1971a)Google Scholar
  16. — Nahrungsaufnahme, Nahrungsausnutzung und Wachstum von Nereis virens (Polychaeta, Nereidae). Veröff. Inst. Meeresforsch. Bremerh. 13, 51–78 (1971b)Google Scholar
  17. Hagmeier, A.: Die Nahrung der Meerestiere. Handb. Seefisch. Nordeur. 1 (5b), 86–242 (1951)Google Scholar
  18. — und R. Kändler: Neue Untersuchungen im nordfriesischen Wattenmeer und auf den fiskalischen Austernbänken. Helgoländer wiss. Meeresunters. (N.F.) 16, 1–90 (1927)Google Scholar
  19. Hildreth, D.I. and D.J. Crisp: A corrected formula for calculation of filtration rate of bivalve molluscs in an experimental flowing system. J. mar. biol. Ass. U.K. 56, 111–120 (1976)Google Scholar
  20. Hughes, R.N.: An energy budget for a tidal-flat population of the bivalve Scrobicularia plana (da Costa). J. Anim. Ecol. 39, 357–381 (1970)Google Scholar
  21. Hughes, T.G.: Deposit feeding in Abra tenuis (Bivalvia: Tellinacea). J. Zool., Lond. 171, 499–512 (1973)Google Scholar
  22. Hunt, O.D.: The food of the bottom fauna of the Plymouth fishing grounds. J. mar. biol. Ass. U.K. 13, 560–599 (1925)Google Scholar
  23. Hylleberg, J. and V.F. Gallucci: Selectivity in feeding by the deposit-feeding bivalve Macoma nasuta. Mar. Biol. 32, 167–178 (1975)Google Scholar
  24. Johannes, R.E. and M. Satomi: Composition and nutritive value of fecal pellets of a marine crustacean. Limnol. Oceanogr. 11, 191–197 (1966)Google Scholar
  25. —: Measuring organic matter retained by aquatic invertebrates. J. Fish. Res. Bd Can. 24, 2467–2471 (1967)Google Scholar
  26. — and K.L. Webb: Release of dissolved organic compounds by marine and fresh water invertebrates. Symposium on Organic Matter in Natural Waters, University of Alaska, 2–4 September 1968. Contr. Va Inst. mar. Sci. 289, 392–408 (1971/1972)Google Scholar
  27. Kay, D.G. and A.E. Brafield: The energy relations of the polychaete Neanthes (=Nereis) virens (Sars). J. Anim. Ecol. 42, 673–692 (1973)Google Scholar
  28. Kessler, M.: Die Entwicklung von Lanice conchilega (Pallas) mit besonderer Berücksichtigung der Lebensweise. Helgoländer wiss. Meeresunters. 8, 425–476 (1963)Google Scholar
  29. Klökner, K.: Zur Ökologie von Pomatoceros triqueter (L.) (Serpulidae, Polychaeta), 168 pp. Dissertation, Universität Tübingen 1976Google Scholar
  30. Kühl, H.: Über die Nahrung der Soharbe (Limanda limanda L.). Arch. FischWiss. 14, 8–17 (1963)Google Scholar
  31. Lovegrove, T.: The effect of various factors on dry weight values. Rapp. P. v. Réun. Cons. perm. int. Explor. Mer 153, 86–91 (1962)Google Scholar
  32. Lüneburg, H.: Die Verteilung der Sinkstoffe in den Seitenräumen der Wesermündung. Veröff. Inst. Meeresforsch. Bremerh. 3, 228–258 (1955)Google Scholar
  33. Nichols, F.H.: Dynamics and energetics of three deposit-feeding benthic invertebrate populations in Puget Sound, Washington. Ecol. Monogr. 45, 57–82 (1975)Google Scholar
  34. Paine, R.T.: The measurement and application of the calorie to ecological problems. A. Rev. Ecol. Syst. 2, 145–164 (1971)Google Scholar
  35. Parsons, T.R., K. Stephens and J.D.H. Strickland: On the chemical composition of eleven species of marine phytoplankters. J. Fish. Res. Bd Can. 18, 1001–1016 (1961)Google Scholar
  36. Phillipson, J. A miniature bomb calorimeter for small biological samples. Oikos 15, 130–139 (1964)Google Scholar
  37. Reid, R.G.B. and A. Reid: Feeding processes of members of the genus Macoma (Mollusca: Bivalvia). Can. J. Zool. 47, 649–657 (1969)Google Scholar
  38. Reiners, W.A. and N.M. Reiners: Comparison of oxygen-bomb combustion with standard ignition techniques for determining total ash. Ecology 53, 132–136 (1972)Google Scholar
  39. Remane, A.: Einführung in die zoologische Ökologie der Nord-und Ostsee. Tierwelt N.-u. Ostsee 1a, 1–238 (1940)Google Scholar
  40. Rigler, F.H.: Methods for the measurement of assimilation of food by zooplankton. In: A manual of methods for the assessment of secondary productivity in fresh waters, pp 264–269. Ed. by W.T. Edmondson and G.G. Winberg. Oxford and Edinburgh: Blackwell Scientific Publications 1971. (IBP Handbook No. 17)Google Scholar
  41. Seilacher, A.: Der Röhrenbau von Lanice conchilega (Polychaeta). Ein Beitrag zur Deutung fossiler Lebensspuren. Senckenbergiana 32, 267–280 (1951)Google Scholar
  42. Tenore, K.R. and W.M. Dunstan: Comparison of feeding and biodeposition of three bivalves at different food levels. Mar. Biol. 21, 190–195 (1973)Google Scholar
  43. — and U.K. Gopalan: Feeding efficiencies of the polychaete Nereis virens cultured on hardclam tissue and oyster detritus. J. Fish. Res. Bd Can. 31, 1675–1678 (1974)Google Scholar
  44. Thompson, R.J. and B.L. Bayne: Some relationships between growth, metabolism and food in the mussel Mytilus edulis. Mar. Biol. 27 317–326 (1974)Google Scholar
  45. Walne, P.R. and B.E. Spencer: Experiments on the growth and food conversion efficiency of the spat of Ostrea edulis L. in a recirculation system. J. Cons. int. Explor. Mer 35, 303–318 (1974)Google Scholar
  46. Widdows, J. and B.L. Bayne: Temperature acclimation of Mytilus edulis with reference to its energy budget. J. mar. biol. Ass. U.K. 51, 827–843 (1971)Google Scholar
  47. Winter, J.E.: Über den Einfluß der Nahrungskon-zentration und anderer Faktoren auf Filtrierleistung und Nahrungsausnutzung der Muscheln Arctica islandica und Modiolus modiolus. Mar. Biol. 4, 87–135 (1969)Google Scholar
  48. — Filter feeding and food utilization in Arctica islandica and Modiolus modiolus at different food concentrations. In: Marine food chains, pp 196–206. Ed. by J.H. Steele. Edinburgh: Oliver & Boyd 1970Google Scholar
  49. — The filtration rate of Mytilus edulis and its dependence on algal concentration, measured by a continuous automatic recording apparatus. Mar. Biol. 22, 317–328 (1973)Google Scholar
  50. Yonge, C.M.: The sea shore, 311 pp. London: Collins 1949Google Scholar
  51. Ziegelmeier, E.: Beobachtungen über den Röhrenbau von Lanice conchilega (Pallas) im Experiment und am natürlichen Standort. Helgoländer wiss. Meeresunters. 4, 107–129 (1952)Google Scholar
  52. — Neue Untersuchungen über die Wohnröhren-Bauweise von Lanice conchilega (Polychaeta, Sedentaria). Helgoländer wiss. Meeresunters. 19, 216–229 (1969a)Google Scholar
  53. — Wohnröhrenbauweise von Lanice conchilega (Polychaeta, Sedentaria). Zool. Anz. (Suppl. Bd.) 33, 639–642 (1969b)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • K. -J. Buhr
    • 1
  1. 1.Institut für Meeresforschung BremerhavenBremerhavenGermany (FRG)

Personalised recommendations