Skip to main content
Log in

Effect of hydrogen adaptation on fluorescence in normal and manganese-deficient algae

  • Published:
Planta Aims and scope Submit manuscript

Summary

  1. 1.

    Steady-state fluorescence of normal cells of Ankistrodesmus braunii is about 40% higher under hydrogen-adapted as compared to aerobic conditions.

  2. 2.

    By contrast, fluorescence of manganese-deficient A. braunii, which aerobically is twice as strong as that of normal cells, decreases in the course of adaptation to a considerably lower level which is about as high as that of normal algae adapted to hydrogen.

  3. 3.

    The effects of DCMU on fluorescence of aerobic and anaerobic cells of A. braunii are similar to those brought about by manganese deficiency.

  4. 4.

    In Chlorella fusca (=pyrenoidosa), which develops a very high level of hydrogenase activity, fluorescence of normal cells is about equal under H2-adapted and under aerobic conditions.

According to the current concept of the relation between fluorescence intensity and photosynthetic electron transport, these results seem to indicate that, in addition to system I, system II of photosynthesis is at least partly active in H2-adapted and photoreducing algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnon, D. I., M. Losada, M. Nozaki, and K. Tagawa: Photoproduction of hydrogen, photofixation of nitrogen and a unified concept of photosynthesis. Nature (Lond.) 190, 601–606 (1961).

    Google Scholar 

  • Bishop, N. I.: The influence of the herbicide, DCMU, on the oxygen-evolving system of photosynthesis. Biochim. biophys. Acta 27, 205–206 (1958).

    Google Scholar 

  • — Separation of the oxygen evolving system of photosynthesis from the photochemistry in a mutant of Scendesmus. Nature (Lond.) 195, 55–57 (1962).

    Google Scholar 

  • — Comparison of the action spectra and quantum requirements for photosynthesis and photoreduction of Scenedesmus. Photochem. Photobiol. 6, 621–628 (1967).

    Google Scholar 

  • —, and H. Gaffron: Photoreduction at λ 705 mμ in adapted algae. Biochem. biophys. Res. Commun. 8, 471–476 (1962).

    Google Scholar 

  • Butler, W. L.: Fluorescence yield in photosynthetic systems and its relation to electron transport. In: Current topics in bioenergetics, vol. 1, D. R. Sanadi, ed., p. 49–73. New York: Acadmic Press 1966.

    Google Scholar 

  • Butler, W. L., and N. I. Bishop: Action of two-pigment system on fluorescence yield of chlorophyll a. In: Photosynthetic mechanisms of green plants, p. 91–100. National Academy of Sciences 1963.

  • Duysens, L. N. M., and H. E. Sweers: Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: Studies on microalgae and photosynthetic bacteria, p. 353–372. Tokyo: Japanese Society of Plant Physiologists 1963.

    Google Scholar 

  • Gaffron, H.: Carbon dioxide reduction with molecular hydrogen in green algae. Amer. J. Bot. 27, 273–283 (1940).

    Google Scholar 

  • — Reduction of carbon dioxide coupled with the oxyhydrogen reaction in algae. J. gen. Physiol. 26, 241–267 (1942).

    Google Scholar 

  • — On dating stages in photochemical evolution. In: Horizons in biochemistry, p. 59–89. New York: Academic Press 1962.

    Google Scholar 

  • Gaffron, H., and N. I. Bishop: The photolysis of water in living cells and the role of the twopigment system. Coll. Int. Centre Nat. Rech. Sci. No 119, La Photosynthèse, p. 229–241 (1963).

  • Gingras, G.: Étude comparative, chez quelques algues, de la photosynthèse et de la photoréduction réalisée an présence d'hydrogène. Physiol. végét. 4, 1–65 (1966).

    Google Scholar 

  • —, et J. Lavorel: Propriétés de fluorescence de Scenedesmus adapté à l'hydrogène. Physiol. végét. 3, 109–120 (1965).

    Google Scholar 

  • Joliot, P.: Études simultanées des cinétiques de fluorescence et d'émission d'oxygène photosynthétique. Biochim. biophys. Acta 102, 135–148 (1965).

    Google Scholar 

  • Kautsky, H., W. Appel u. H. Amann: Chlorophyllfluoreszenz und Kohlensäureassimilation. XIII. Die Fluoreszenzkurve und die Photochemie der Pflanze. Biochem. Z. 332, 277–292 (1960).

    Google Scholar 

  • Kessler, E.: Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. I. Über die Rolle des Mangans bei Photoreduktion und Photosynthese. Planta (Berl.) 49, 435–454 (1957).

    Google Scholar 

  • — Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. III. Merkmale von 8 autotrophen Arten. Arch. Mikrobiol. 55, 346–357 (1967).

    Google Scholar 

  • Kessler, E.: Effect of manganese deficiency on growth and chlorophyll content of algae with and without hydrogenase. Arch Mikrobiol, in press (1968).

  • — W. Arthur, and J. E. Brugger: The influence of manganese and phosphate on delayed light emission, fluorescence, photoreduction and photosynthesis in alage. Arch. Biochem. 71, 326–335 (1957).

    Google Scholar 

  • —, u. W. Langner: Jahresperiodische Aktivitätsschwankungen bei einer Chlorella. Naturwissenschaften 49, 331–332 (1962).

    Google Scholar 

  • —— I. Ludewig, u. H. Wiechmann: Bildung von Sekundär-Carotinoiden bei Stickstoffmangel und Hydrogenase-Aktivität als taxonomische Merkmale in der Gattung Chlorella. In: Studies on microalgae and photosynthetic bacteria, p. 7–20. Tokyo: Japanese Society of Plant Physiologists 1963.

    Google Scholar 

  • Pirson, A., C. Tichy, u. G. Wilhelmi: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. I. Vergleichende Untersuchungen an Mangelkulturen von Ankistrodesmus. Planta (Berl.) 40, 199–253 (1952).

    Google Scholar 

  • Rieke, F. F.: Quantum efficiencies for photosynthesis and photoreduction in green plants. In: Photosynthesis in plants, p. 251–272. Ames, Iowa 1949.

  • Shiau, Y. G., and J. Franck: Chlorophyll fluorescence and photosynthesis in algae, leaves and chloroplasts. Arch. Biochem. 14, 253–295 (1947).

    Google Scholar 

  • Stanier, R. Y.: Photosynthetic mechanisms in bacteria and plants: Development of a unitary concept. Bact. Rev. 25, 1–17 (1961).

    Google Scholar 

  • Stout, P. R., and D. I. Arnon: Experimental methods for the study of the role of copper, manganese, and zinc in the nutrition of higher plants. Amer. J. Bot. 26, 144–149 (1939).

    Google Scholar 

  • Tagawa, K., and D. I. Arnon: Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature (Lond.) 195, 537–543 (1962).

    Google Scholar 

  • Witt, H. T., B. Skerra, and J. Vater: Conditions for the isolation of reaction cycle II. Rate of water splitting, location of the rate determining step of the over-all reaction: The electron carrier Y. In: Currents in photosynthesis (J. B. Thomas and J. C. Goedheer, eds.), p. 273–283. Rotterdam: Donker 1966.

    Google Scholar 

  • Ying, H. C., T. Y. Li, and Y. K. Shen: Comparative studies on the mechanism of photosynthesis. I. Photoreduction by Scenedesmus sp. under light of different wavelengths. Acta biochem. biophys. sinica 3, 497–501 (1963).

    Google Scholar 

  • Zweig, G., I. Tamás, and E. Greenberg: The effect of photosynthesis inhibitors on oxygen evolution and fluorescence of illuminated Chlorella. Biochim. biophys. Acta 66, 196–205 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, E. Effect of hydrogen adaptation on fluorescence in normal and manganese-deficient algae. Planta 81, 264–273 (1968). https://doi.org/10.1007/BF00391161

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391161

Keywords

Navigation