Cell proliferation in the neural tube: An electron microscopic and Golgi analysis in the mouse cerebral vesicle

  • James W. Hinds
  • Trudy Lakin Ruffett
Article

Summary

The shape and fine structure of ventricular (primitive ependymal) cells during their generation cycle was studied. Interphase cells are radially oriented bipolar elements with processes spanning the thickness of the brain wall. Zonular junctional complexes joining internal processes at the ventricle consist of gap junctions and wider intermediate junctions. The external limiting layer consists of expanded end-feet in simple apposition; they resemble axonal growth cones and contain a feltwork of 60 Å microfilaments, elements of smooth endoplasmic reticulum but no microtubules. During prophase, nuclei of ventricular cells move to a juxtaventricular position, while their external processes remain fully extended. The internal processes of such cells contain numerous longitudinally arranged microtubules and microfilaments. Subsequent to nuclear migration, in prometaphase or metaphase, the cell withdraws or pinches off its external process and becomes nearly spherical. During telophase an asymmetrical furrow formation results in a thin connector (midbody) between daughter cells which is adjacent to the ventricle and attached there by the junctional complex. Either before or after complete separation, an external process starts regrowing towards the external limiting layer, eventually resulting in a bipolar interphase cell again. Microfilaments are present in telophase cells before outgrowth of external processes and in growing tips of external processes.

Key-Words

Neuroembryology Neural tube Cell proliferation Mitosis Cell movement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allenspach, A. L., Roth, L. E.: Structural variations during mitosis in the chick embryo. J. Cell Biol. 33, 179–196 (1967).Google Scholar
  2. Angevine, J. B., Jr., Sidman, R. L.: Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature (Lond.) 192, 766–768 (1961).Google Scholar
  3. — —: Autoradiographic study of histogenesis in the cerebral cortex of the mouse. Anat. Rec. 142, 210 (1962).Google Scholar
  4. Bennett, M. V. L., Pappas, G. D., Giménez, M., Nakajima, Y.: Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in Gymnotid fish. J. Neurophysiol. 30, 236–300 (1967).Google Scholar
  5. Berry, M., Rogers, A. W.: The migration of neuroblasts in the developing cerebral cortex. J. Anat. (Lond.) 99, 691–709 (1965).Google Scholar
  6. Boulder Committee: Embryonic vertebrate central nervous system: revised terminology. Anat. Rec. 166, 257–262 (1970).Google Scholar
  7. Brightman, M. W., Reese, T. S.: Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677 (1969).Google Scholar
  8. Brinkley, B. R., Stubblefield, E., Hsu, T. C.: The effects of Colcemid inhibition and reversal on the fine structure of the mitotic appartus of Chinese hamster cells in vitro. J. Ultrastruct. Res. 19, 1–18 (1967).Google Scholar
  9. Buckley, I. K., Porter, K. R.: Cytoplasmic fibrils in living cultured cells. A light and electron microscope study. Protoplasma (Wien) 64, 349–380 (1967).Google Scholar
  10. Caley, D. W., Maxwell, D. S.: Development of the blood vessels and extracellular spaces during postnatal maturation of rat cerebral cortex. J. comp. Neurol. 138, 31–18 (1970).Google Scholar
  11. Cloney, R. A.: Cytoplasmic filaments and morphogenesis: the role of the notochord in ascidian metamorphosis. Z. Zellforsch. 100, 31–53 (1969).Google Scholar
  12. Cobb, J. L. S., Bennett, T.: An ultrastructural study of mitotic division in differentiated gastric smooth muscle cells. Z. Zellforsch. 108, 177–189 (1970).Google Scholar
  13. Del Cerro, M. P., Snider, R., Oster, M. L.: Evolution of the extracellular space in immature nervous tissue. Experientia (Basel) 24, 929–930 (1968).Google Scholar
  14. Duckett, S.: The germinal layer of the growing human brain during early fetal life. Anat. Rec. 161, 231–246 (1968).Google Scholar
  15. Duncan, D.: Electron microscope study of the embryonic neural tube and notochord. Tex. Rep. Biol. Med. 15, 367–377 (1957).Google Scholar
  16. Farquhar, M. G., Palade, G. E.: Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).Google Scholar
  17. Flickinger, C. J.: The fine structure and development of the seminal vesicle and prostate in the fetal rat. Z. Zellforsch. 109, 1–14 (1970).Google Scholar
  18. Fujita, S.: The matrix cell and cytogenesis in the developing central nervous system. J. comp. Neurol. 120, 37–42 (1963).Google Scholar
  19. Herman, L., Kauffman, S. L.: The fine structure of the embryonic mouse neural tube with special reference to cytoplasmic microtubules. Develop. Biol. 13, 145–162 (1966).Google Scholar
  20. Hicks, S. P., D'Amato, C. J.: Cell migration to the isocortex in the rat. Anat. Rec. 160, 619–634 (1968).Google Scholar
  21. Hinds, J. W.: Autoradiographic study of histogenesis in the mouse olfactory bulb. Ph. D. Thesis, Harvard University, Cambridge, Mass. 1967.Google Scholar
  22. —: Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J. comp. Neurol. 134, 287–304 (1968a).Google Scholar
  23. —: Autoradiographic study of histogenesis in the mouse olfactory bulb. II. Cell proliferation and migration. J. comp. Neurol. 134, 305–322 (1968b).Google Scholar
  24. —, Angevine, J. B., Jr.: Autoradiographic study of histogenesis in the area pyriformis and claustrum in the mouse. Anat. Rec. 151, 456–457 (1965).Google Scholar
  25. His, W.: Die Neuroblasten und deren Entstehung im embryonalen Mark. Arch. Anat. Physiol., Anat. Abt. 1889, 249–300 (1889).Google Scholar
  26. Ishikawa, H., Bischoff, R., Holtzer, H.: Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J. Cell Biol. 43, 312–328 (1969).Google Scholar
  27. Kershman, J.: The medulloblast and the medulloblastoma. A study of human embryos. Arch. Neurol. Psychiat. (Chic.) 40, 937–967 (1938).Google Scholar
  28. Langman, J.: Histogenesis of the central nervous system. In: The structure and function of nervous tissue, vol. I, p. 33–66 (G. H. Bourne, ed.). New York: Academic 1968.Google Scholar
  29. —, Guerrant, R. L., Freeman, B. G.: Behavior of neuro-epithelial cells during closure of the neural tube. J. comp. Neurol. 127, 399–411 (1966).Google Scholar
  30. Lyser, K. M.: Early differentiation of motor neuroblasts in the chick embryo as studied by electron microscopy. I. General aspects. Develop. Biol. 10, 433–466 (1964).Google Scholar
  31. —: Early differentiation of motor neuroblasts in the chick embryo as studied by electron microscopy. II. Microtubules and neurofilaments. Develop. Biol. 17, 117–142 (1968).Google Scholar
  32. Manasek, F. J.: Mitosis in developing cardiac muscle. J. Cell Biol. 37, 191–196 (1968).Google Scholar
  33. Mark, G. E., Strasser, F. F.: Pacemaker activity and mitosis in cultures of newborn rat heart ventricle cells. Exp. Cell Res. 44, 217–233 (1966).Google Scholar
  34. Martin, A. H.: Significance of mitotic spindle fibre orientation in the neural tube. Nature (Lond.) 216, 1133–1134 (1967).Google Scholar
  35. Mazia, D.: Mitosis and the physiology of cell division. In: The cell, vol. III, p. 77–412 (J. Brächet and A. E. Mirsky, eds.). New York: Academic 1961.Google Scholar
  36. Morest, D. K.: Growth of cerebral dendrites and synapses. Anat. Rec. 160, 516 (1968a).Google Scholar
  37. —: The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z. Anat. Entwickl.-Gesch. 127, 201–220 (1968b).Google Scholar
  38. —: The differentiation of cerebral dendrites: a study of the post-migratory neuroblast in the medial nucleus of the trapezoid body. Z. Anat. Entwickl.-Gesch. 128, 271–289 (1969a).Google Scholar
  39. —: The growth of dendrites in the mammalian brain. Z. Anat. Entwickl.-Gesch. 128, 290–317 (1969b).Google Scholar
  40. —: A study of neurogenesis in the forebrain of opossum pouch young. Z. Anat. Entwickl.-Gesch. 130, 265–305 (1970a).Google Scholar
  41. —: The pattern of neurogenesis in the retina of the rat. Z. Anat. Entwickl.-Gesch. 131, 45–67 (1970b).Google Scholar
  42. —, Morest, R. R.: Perfusion-fixation of the brain with chrome-osmium solutions for the rapid Golgi method. Amer. J. Anat. 118, 811–832 (1966).Google Scholar
  43. Murray, R. G., Murray, A. S., Pizzo, A.: The fine structure of mitosis in rat thymic lymphocytes. J. Cell Biol. 26, 601–620 (1965).Google Scholar
  44. Nanney, D. L., Rudzinska, M. A.: Protozoa. In: The cell, vol. IV, p. 109–150 (J. Brachet and A. E. Mirsky, eds.). New York: Academic 1960.Google Scholar
  45. Payton, B. W., Bennett, M. V. L., Pappas, G. D.: Permeability and structure of junctional membranes at an electrotonic synapse. Science 166, 1641–1643 (1969).Google Scholar
  46. Pearce, T. L., Zwaan, J.: A light and electron microscopic study of cell behavior and microtubules in the embryonic chicken lens using Colcemid. J. Embryol. exp. Morph. 23, 491–507 (1970).Google Scholar
  47. Peters, A., Palay, S. L., Webster, H. de F.: The fine structure of the nervous system. New York: Harper and Row 1970.Google Scholar
  48. Pomerat, C. M.: Rotating nuclei in tissue cultures of adult human nasal mucosa. Exp. Cell Res. 5, 191–196 (1953).Google Scholar
  49. Potter, D. D., Furshpan, E. J., Lennox, E. S.: Connection between cells of the developing squid as revealed by electrophysiological methods. Proc. nat. Acad. Sci. (Wash.) 55, 328–336 (1966).Google Scholar
  50. Pysh, J. J.: Development of the extracellular space in rat inferior colliculus. Anat. Rec. 157, 304 (1967).Google Scholar
  51. Ramón y Cajal, S.: Histologie du système nerveux de l'homme et des vertébrés, vol. I (1952 reprint). Madrid: Instituto Ramón y Cajal 1909.Google Scholar
  52. Revel, J. P., Karnovsky, M. J.: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33, C7-C12 (1967).Google Scholar
  53. Robbing, E., Gonatas, N. K.: The ultrastructure of a mammalian cell during the mitotic cycle. J. Cell Biol. 21, 429–64 (1964).Google Scholar
  54. Sauer, F. C.: Mitosis in the neural tube. J. comp. Neurol. 62, 377–405 (1935).Google Scholar
  55. —: The interkinetic migration of embryonic epithelial nuclei. J. Morph. 60, 1–11 (1936).Google Scholar
  56. —: Some factors in the morphogenesis of vertebrate embryonic epithelia. J. Morph. 61, 563–579 (1937).Google Scholar
  57. Sauer, M. E., Walker, B. E.: Radioautographic study of interkinetic nuclear migration in the neural tube. Proc. Soc. exp. Biol. (N.Y.) 101, 557–560 (1959).Google Scholar
  58. Scharff, M. D., Robbins, E.: Polyribosome disaggregation during metaphase. Science 151, 992–995 (1966).Google Scholar
  59. Schroeder, T. E.: Neurulation in Xenopus laevis. An analysis and model based upon light and electron microscopy. J. Embryol. exp. Morph. 23, 427–462 (1970).Google Scholar
  60. Scott, D. G., Daniel, C. W.: Filaments in the division furrow of mouse mammary cells. J. Cell Biol. 45, 461–466 (1970).Google Scholar
  61. Sechrist, J. W.: Neurocytogenesis. I. Neurofibrils, neurofilaments, and the terminal mitotic cycle. Amer. J. Anat. 124, 117–134 (1969).Google Scholar
  62. Sheffield, J. B., Fischman, D. A.: Intercellular junctions in the developing neural retina of the chick embryo. Z. Zellforsch. 104, 405–418 (1970).Google Scholar
  63. Sheridan, J. D.: Electrophysiological evidence for low-resistance intercellular junctions in the early chick embryo. J. Cell Biol. 37, 650–659 (1968).Google Scholar
  64. Shimada, M., Langman, J.: Cell proliferation, migration and differentiation in the cerebral cortex of the golden hamster. J. comp. Neurol. 139, 227–244 (1970).Google Scholar
  65. Sidman, R. L., Miale, I. L., Feder, N.: Cell proliferation and migration in the primitive ependymal zone; an autoradiographic study of histogenesis in the nervous system. Exp. Neurol. 1, 322–333 (1959).Google Scholar
  66. Smart, I.: The subependymal layer of the mouse brain and its cell production as shown by radioautography after thymidine-H3 injection. J. comp. Neurol. 116, 325–347 (1961).Google Scholar
  67. Snider, P. J.: Nuclear movements in Schizophyllum. Symp. Soc. exp. Biol. 22, 261–284 (1968).Google Scholar
  68. Sotelo, C., Palay, S. L.: The fine structure of the lateral vestibular nucleus in the rat. II. Synaptic organization. Brain Res. 18, 93–115 (1970).Google Scholar
  69. Spooner, B. S., Wessells, N. K.: Effects of cytochalsin B upon microfilaments involved in morphogenesis of salivary epithelium. Proc. nat. Acad. Sci. (Wash.) 66, 360–364 (1970).Google Scholar
  70. Stensaas, L. J., Stensaas, S. S.: An electron microscope study of cells in the matrix and intermediate laminae of the cerebral hemisphere of the 45 mm rabbit embryo. Z. Zellforsch. 91, 341–365 (1968).Google Scholar
  71. Sumi, S. M.: The extracellular space in the developing rat brain: its variation with changes in osmolarity of the fixative, method of fixation and maturation. J. Ultrastruct. Res. 29, 398–425 (1969).Google Scholar
  72. Tennyson, V. M.: Electron microscopic observation of the development of the neuroblast in the rabbit embryo. In: Proc. Fifth International Congr. for Electron Microscopy, vol. 2, p. N8. New York: Academic 1962.Google Scholar
  73. —: The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo. J. Cell Biol. 44, 62–79 (1970).Google Scholar
  74. Tilney, L. G., Gibbins, J. R.: Microtubules and filaments in the filopodia of the secondary mesenchyme cells of Arbacia punctulata and Echinarachnius parma. J. Cell Sci. 5, 195–210 (1969).Google Scholar
  75. Trelstad, R. L., Hay, E. D., Revel, J. P.: Cell contact during early morphogenesis in the chick embryo. Develop. Biol. 16, 78–106 (1967).Google Scholar
  76. Venable, J. H., Coggeshall, R.: A simplified lead citrate stain for use in electron microscopy. J. Cell Biol. 25, 407–408 (1965).Google Scholar
  77. Watterson, R. L.: Structure and mitotic behavior of the early neural tube. In: Organogenesis, p. 129–160 (R. L. De Haan and H. Ursprung, eds.). New York: Holt, Rinehart, and Winston, 1965.Google Scholar
  78. Weidman, T. A., Kuwabara, T.: Postnatal development of the rat retina. An electron microscopic study Arch. Ophthal. 79, 470–484 (1968).Google Scholar
  79. Woodard, T. M., Jr., Estes, S. B.: Effect of colchicine on mitosis in the neural tube of the forty-eight hour chick embryo. Anat. Rec. 90, 51–54 (1944).Google Scholar
  80. Wrenn, J. T., Wessels, N. K.: Cytochalasin B: effect upon microfilaments involved in morphogenesis of estrogen-induced glands of oviduct. Proc. nat. Acad. Sci. (Wash.) 66, 904–908 (1970).Google Scholar
  81. Yamada, K. M., Spooner, B. S., Wessells, N. K.: Axon growth: roles of microfilaments and microtubules. Proc. nat. Acad. Sci. (Wash.) 66, 1206–1212 (1970).Google Scholar
  82. Zwaan, J., Bryan, P. R., Pearce, T. L.: Interkinetic nuclear migration during the early stage of lens formation in the chicken embryo. J. Embryol. exp. Morph. 21, 71–83 (1969).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • James W. Hinds
    • 1
  • Trudy Lakin Ruffett
    • 1
  1. 1.Department of AnatomyBoston University School of MedicineBostonUSA

Personalised recommendations