Skip to main content
Log in

Cytoplasmic streaming affects gravity-induced amyloplast sedimentation in maize coleoptiles

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Living maize (Zea mays L.) coleoptile cells were observed using a horizontal microscope to determine the interaction between cytoplasmic streaming and gravity-induced amyloplast sedimentation. Sedimentation is heavily influenced by streaming which may (1) hasten or slow the velocity of amyloplast movement and (2) displace the plastid laterally or even upwards before or after sedimentation. Amyloplasts may move through transvacuolar strands or through the peripheral cytoplasm which may be divided into fine cytoplasmic strands of much smaller diameter than the plastids. The results indicate that streaming may contribute to the dynamics of graviperception by influencing amyloplast movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R.D., Allen, N.S. (1983) Video-enhanced microscopy with a computer frame memory. J. Microscopy 129, 3–17

    Google Scholar 

  • Audus, L.J. (1979) Plant geosensors. J. Exp. Bot. 30, 1051–1074

    Google Scholar 

  • Clifford, P.E., Barclay, G.F. (1980) The sedimentation of amyloplasts in living statocytes of the dandelion flower stalk. Plant Cell Environ. 3, 381–386

    Google Scholar 

  • Clifford, P.E., Fensom, D.S., Munt, B.I., McDowell, W.D. (1982) Lateral stress initiates bending responses in dandelion peduncles: a clue to geotropism? Can. J. Bot. 60, 2671–2673

    Google Scholar 

  • Gaynor, J.J., Galston, A.W. (1982) Isolated statocytes from etiolated pea epicotyls: a model system for the study of graviperception at a cellular level. (Abstr.) Physiologist 25, 232

    Google Scholar 

  • Haberlandt, G. (1900) Über die Perception des geotropischen Reizes. Ber. Dtsch. Bot. Ges. 18, 261–272

    Google Scholar 

  • Hawker, L.E. (1932) A quantitative study of the geotropism of seedlings with special reference to the nature and development of their statolith apparatus. Ann. Bot. 46, 121–157

    Google Scholar 

  • Heathcote, D.G. (1981) The geotropic reaction and statolith movements following geostimulation of mung bean hypocotyls. Plant Cell Environ. 4, 131–140

    Google Scholar 

  • Heilbronn, A.L. (1914) Zustand des Plasmas und Reizbarkeit. Jahrb. Wiss. Bot. 54, 355–390

    Google Scholar 

  • Hejnowicz, Z., Sievers, A. (1981) Regulation of the position of statoliths in Chara rhizoids. Protoplasma 108, 117–137

    Google Scholar 

  • Hertel, R., de la Fuente, R.K., Leopold, A.C. (1969) Geotropism and the lateral transport of auxin in the corn mutant amylomaize. Planta 88, 204–214

    Google Scholar 

  • Hestnes, A., Iversen, T.-H. (1978) Movement of cell organelles and the geotropic curvature in roots of Norway spruce (Picea abies). Physiol. Plant. 42, 406–414

    Google Scholar 

  • Iversen, T.-H., Rommelhoff, A. (1978) The starch statolith hypothesis and the interaction of amyloplasts and endoplasmic reticulum in root geotropism. J. Exp. Bot. 29, 1319–1328

    Google Scholar 

  • Johnsson, A., Rengman, K., Grahm, L. (1971) Investigations of the geotropic curvature of the Avena coleoptile. II. The presentation time as a function of distance from apex. Physiol. Plant. 25, 43–47

    Google Scholar 

  • Kamiya, N. (1959) Protoplasmic streaming. Protoplasmatologia, vol. 8, pt. 3a. Springer, Wien, New York

    Google Scholar 

  • Kessler, J.O. (1979) Gravity sensing, polar transport and cytoplasmic streaming in plant cells. (Abstr.) Physiologist 22, Suppl., S47–8

    Google Scholar 

  • Larsen, P. (1965) Geotropic responses in roots as influenced by their orientation before and after stimulation. Physiol. Plant. 18, 747–765

    Google Scholar 

  • Perbal, G. (1974) Etude d'un modèle de statocyte, établi à p[artir de l'examen des cellules axiales centrales de la coiffe du Lens culinaris L. C.R. Acad. Sci. Paris Ser. D 278, 2783–2786

    Google Scholar 

  • Perbal, G., Perbal, P. (1976) La perception géotropique dans la coiffe des racines de Lentille. Physiol. Plant. 37, 42–48

    Google Scholar 

  • Sack, F.D., Suyemoto, M.M., Leopold, A.C. (1984) Kinetics of amyloplast sedimentation in gravistimulated maize-coleoptiles. Planta 161, 459–464

    Google Scholar 

  • Shen-Miller, J., Miller, C. (1972) Distribution and activation of the golgi apparatus in geotropism. Plant Physiol. 49, 634–639

    Google Scholar 

  • Weber, G., Weber, F. (1917) Wirkung der Schwerkraft auf die Plasmaviskosität. Jahrb. Wiss. Bot. 57, 129–188

    Google Scholar 

  • Zollikofer, C. (1918) Über die Wirkung der Schwerkraft auf die Plasmaviskosität. Beitr. Allg. Bot. 1, 449–500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sack, F.D., Leopold, A.C. Cytoplasmic streaming affects gravity-induced amyloplast sedimentation in maize coleoptiles. Planta 164, 56–62 (1985). https://doi.org/10.1007/BF00391025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391025

Key words

Navigation