Skip to main content
Log in

Absence of CeCl3-detectable peroxisomal glycolate-oxidase activity in developing raphide crystal idioblasts in leaves of Psychotria punctata Vatke and roots of Yucca torreyi L.

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Three peroxisomal enzymes, glycolate oxidase, urate oxidase and catalase were localized cytochemically in Psychotria punctata (Rubiaceae) leaves and Yucca torreyi (Agavaceae) seedling root tips, both of which contain developing and mature calcium-oxalate raphide crystal idioblasts. Glycolate-oxidase (EC 1.1.3.1) and catalase (EC 1.11.1.6) activities were present within leaftype peroxisomes in nonidioblastic mesophyll cells in Psychotria leaves, while urate-oxidase (EC 1.7.3.3) activity could not be conclusively demonstrated in these organelles. Unspecialized peroxisomes in cortical parenchyma of Yucca roots exhibited activities of all three enzymes. Reactionproduct deposits attributable to glycolate-oxidase activity were never observed in peroxisomes of any developing or mature crystal idioblasts of Psychotria or Yucca. Catalase localization indicates that idioblast microbodies are functional peroxisomes. The apparent absence of glycolate oxidase in crystal idioblasts of Psychotria and Yucca casts serious doubt that pathways involving this enzyme are operational in the synthesis of the oxalic acid precipitated as calcium-oxalate crystals in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMPD:

2-amino-2-methyl-1,3-propandiol

CTEM:

conventional transmission electron microscopy

DAB:

3,3′-diaminobenzidine tetrahydrochloride

HVEM:

high-voltage electron microscopy

References

  • Armentrout, V.N., Graves, L.B., Jr., Maxwell, D.P. (1978) Localization of enzymes of oxalate biosynthesis in microbodies of Sclerotium rolfsii. Phytopathology 68, 1597–1599

    Google Scholar 

  • Arnott, H.J. (1966) Studies of calcification in plants. IIIrd Eur. Symp. on Calcified Tissues, pp. 152–157, Blackwood, J.H., Owen, M., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Arnott, H.J. (1973) Plant calcification. In: Biological mineralization, pp. 609–627, Zipkin, I., ed. Wiley, New York

    Google Scholar 

  • Arnott, H.J., Pautard, F.G.E. (1970) Calcification in plants. In: Biological calcification; cellular and molecular aspects, pp. 375–446, Schraer, H., ed. Appleton-Century-Crofts, New York

    Google Scholar 

  • Beevers, H. (1979) Microbodies in higher plants. Annu. Rev. Plant Physiol. 30, 159–193

    Google Scholar 

  • Betsche, T. (1981) L-Lactate dehydrogenase from leaves of higher plants. Kinetics and regulation of the enzyme from lettuce (Lactuca sativa L.). Biochem. J. 195, 615–622

    Google Scholar 

  • Bornkamm, R. (1965) Die Rolle des Oxalates im Stoffwechsel höherer grüner Pflanzen. Untersuchungen über Lemna minor L. Flora 156, 139–171

    Google Scholar 

  • Chang, C.C., Beevers, H. (1968) Biogenesis of oxalate in plant tissue. Plant Physiol. 34, 403–409

    Google Scholar 

  • Czapek, F. (1921) Biochemie der Pflanzen, vol. 3. Fischer, Jena

    Google Scholar 

  • Davies, D.D., Asker, H. (1983) Synthesis of oxalic acid by enzymes from lettuce leaves. Plant Physiol. 72, 134–138

    Google Scholar 

  • Eilert, G.B. (1974) An ultrastructural study of the development of raphide crystal cells in the roots of Yucca torreyi. Ph. D. dissertation, University of Texas, Austin, Diss. Abstr. Int. 35: 05-B

    Google Scholar 

  • Foster, A.S. (1956) Plant idioblasts: remarkable examples of cell specialization. Protoplasma 46, 184–193

    Google Scholar 

  • Franceschi, V.R., Horner, H.T. (1980) Calcium oxalate crystals in plants. Bot. Rev. 46, 361–427

    Google Scholar 

  • Frank, E., Jensen, W.A. (1970) On the formation of the pattern of crystal idioblasts in Canavalia ensiformis DC. IV. The fine structure of crystal cells. Planta 95, 202–217

    Google Scholar 

  • Frederick, S.E., Newcomb, E.H. (1969) Cytochemical localization of catalase in leaf microbodies (peroxisomes). J. Cell Biol. 43, 343–353

    Google Scholar 

  • Hodgkinson, A. (1977) Oxalic acid in biology and medicine. Academic Press, London New York

    Google Scholar 

  • Horner, H.T., Jr., Wagner, B.L. (1980) The association of druse crystals with the developing stomium of Capsicum annuum (Solanaceae) anthers. Am. J. Bot. 67, 1347–1360

    Google Scholar 

  • Horner, H.T., Jr., Whitmoyer, R.E. (1972) Raphide crystal cell development in leaves of Psychotria punctata (Rubiaceae). J. Cell Sci. 11, 339–355

    Google Scholar 

  • Huang, A.H.C. (1982) Metabolism in plant peroxisomes. In: Recent advances in phytochemistry, pp. 85–123, Creasy, L.L., Hrazdina, G., eds. Plenum Press, New York London

    Google Scholar 

  • Huang, A.H.C., Beevers, H. (1971) Isolation of microbodies from plant tissues. Plant Physiol. 48, 637–641

    Google Scholar 

  • Kausch, A.P., Horner, H.T. (1982) A comparison of calcium oxalate crystals isolated from callus cultures and their explant sources. Scanning electron Microsc. 2, 211–223

    Google Scholar 

  • Kausch, A.P., Horner, H.T. (1983a) The development of mucilaginous raphide crystal idioblasts in young leaves of Typha angustifolia L. (Typhaceae). Am. J. Bot. 70, 691–705

    Google Scholar 

  • Kausch, A.P., Horner, H.T. (1983b) Development of syncytial raphide crystal idioblasts in the cortex of adventitious roots of Vanilla planifolia L. (Orchidaceae). Scanning Electron Microsc. 2, 893–903

    Google Scholar 

  • Kausch, A.P., Wagner, B.L., Horner, H.T. (1983) Use of the cerium chloride technique and energy dispersive X-ray microanalysis in plant peroxisome identification. Protoplasma 118, 1–9

    Google Scholar 

  • Kpodar, M.P., Piquemal, M., Calmés, J., Latche, J. (1978) Relations entre nutrition azotée et metabolism photorespiratoire chez une plante à oxalate, Fagopyrum esculentum M. Physiol. Vég. 16, 117–130

    Google Scholar 

  • Mollenhauer, H.H., Larson, D.A. (1966) Development changes in raphide forming cells in Vanilla planifolia and Monstera deliciosa. J. Ultrastruct. Res. 16, 55–70

    Google Scholar 

  • Soderstrom, T.R. (1962) The isocitric acid content of Crassulacean plants and a few succulent species from other families. Am. J. Bot. 49, 850–855

    Google Scholar 

  • Thomas, J., Trelease, R.N. (1981) Cytochemical localization of glycolate oxidase in microbodies (glyoxysomes and peroxisomes) of higher plant tissues with the CeCl3 technique. Protoplasma 108, 39–53

    Google Scholar 

  • Thomas, R.J., Schrader, L.E. (1981) Ureide metabolism in higher plants. Phytochemistry 20, 361–371

    Google Scholar 

  • Tolbert, N.E. (1973) Glycolate biosynthesis. In: Current topics of cellular regulation, pp. 21–50, Horecker, B.L., Stadman, E.R., eds. Academic Press, New York London

    Google Scholar 

  • Tolbert, N.E. (1980) Microbodies — peroxisomes and glyoxysomes. In: The biochemistry of plants, vol. 1, pp. 359–388, Tolbert, N.E., ed. Academic Press, New York London

    Google Scholar 

  • Tolbert, N.E., Essner, E. (1981) Microbodies: peroxisomes and glyoxysomes. J. Cell Biol. 91, 271S-283S

    Google Scholar 

  • Vaughn, K.C., Duke, S.O., Hanson, C.A. (1982) Ultrastructural localization of urate oxidase in nodules of Sesbania exalta, Glycine max, and Medicago sativa. Histochemistry 74, 309–318

    Google Scholar 

  • Vigil, E.L. (1970) Cytochemical and developmental changes in microbodies (glyoxysomes) and related organelles of castor bean endosperm. J. Cell Biol. 46, 435–454

    Google Scholar 

  • Wagner, G., Loewus, F. (1973) The biosynthesis of (+)-tartaric acid in Pelargonium crispum. Plant Physiol. 52, 651–654

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kausch, A.P., Horner, H.T. Absence of CeCl3-detectable peroxisomal glycolate-oxidase activity in developing raphide crystal idioblasts in leaves of Psychotria punctata Vatke and roots of Yucca torreyi L.. Planta 164, 35–43 (1985). https://doi.org/10.1007/BF00391023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391023

Key words

Navigation