Skip to main content
Log in

Functional organization of the riboflavin biosynthesis operon from Bacillus subtilis SHgw

  • Original Articles
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

We have sequenced 6006 by DNA of a region from the Bacillus subtilis SHgw chromosome known to contain riboflavin biosynthesis genes (rib gene cluster, 210° on the B. subtilis genetic map). Five of the seven open reading frames found within the sequence are shown to represent the genes ribG, ribB, ribA, ribH and rib7D. The calculated molecular masses for the putative translation products are 39305, 23481, 44121, 16287 and 14574 daltons respectively. The five rib genes are transcribed as a polycistronic 4277 nucleotide messenger RNA. The steady-state level of the transcript is negatively regulated by riboflavin. A cis-acting element necessary for regulation was mapped by analysis of constitutive mutations within the 5′ untranslated region of the operon. The element is at least 48 by in length and does not bear obvious similarity to well defined prokaryotic regulatory elements. The molecular mechanism of regulation remains unknown, but the data presented argue against regulation by attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldea M, Claverie-Martin F, Diaz-Torres M, Kushner SR (1988) Transcript mapping using [35-S]DNA probes, trichloroacetate solvent and dideoxy sequencing ladders: a rapid method for identification of transcriptional start points. Gene 65:101–110

    Google Scholar 

  • Bacher A (1991) Biosynthesis of flavins. In: Muller F (ed) Chemistry and biochemistry of flavoproteins, vol 1. Chemical Rubber Co., Boca Raton, Fla., pp 215–259

    Google Scholar 

  • Bouvet P, Belasco JG (1992) Control of RNase E-mediated RNA degradation by 5′-terminal base pairing in E. coli. Nature 360:488–491

    Google Scholar 

  • Bresler SE, Perumov DA, Chernik TP, Glasunov EA (1976) Genetic and biochemical study of mutants accumulating 6-methyl-7(1′,2′-dioxyethyl)-8-ribityllumazine. Genetika (Russian) 12:83–91

    Google Scholar 

  • Bullock W (1987) XL1-Blue: a high efficiency plasmid transforming recA E. coli strain with beta-galactosidase selection. Biotechniques 5:376

    Google Scholar 

  • Chernov BK, Golova JB, Pozmogova GE (1986) Solid phase synthesis of oligodeoxyribonucleotides using phosphamidites dinucleotide blocks. Doklady Akad Nauk SSSR 291:1131–1134

    Google Scholar 

  • Chikindas ML, Mironov VN, Lukyanov EV, Boretsky YuR, Arutyunova LS, Rabinovich PM, Stepanov AI (1987) Determining the riboflavin operon boundaries in Bacillus subtilis. Mol Gen Mikrobiol Virusol (Russian) 4:22–26

    Google Scholar 

  • Chikindas ML, Morosov GI, Mironov VN, Lukyanov EV, Emelyanov VV, Stepanov AI (1988) Regulatory regions of riboflavin biosynthesis operon from Bacillus subtilis. Doklady Akad Nauk USSR (Russian) 298:997–1000

    Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Google Scholar 

  • Dale RMK, McClure BA, Houchins JP (1985) A rapid singlestranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the corn mitochondrial 18S rDNA. Plasmid 13:31–40

    Google Scholar 

  • Ebbole DJ, Zalkin H (1989) Interaction of a putative repressor protein with an extended control region of the Bacillus subtilis pur operon. J Biol Chem 264:3553–3561

    Google Scholar 

  • Hanahan D (1985) Techniques for transformation of E. coli. In: DNA cloning. A practical approach, vol 1. Glober DM (ed) IRL Press, Oxford Washington DC, pp 109–136

    Google Scholar 

  • Henkin TM, Glass BL, Grundy FJ (1992) Analysis of the Bacillus subtilis tyrS gene: Conservation of a regulatory sequence in multiple tRNA synthetase genes. J Bacteriol 174:1299–1306

    Google Scholar 

  • van Kaer L, Gansemans Y, van Montagu M, Dhaes P (1988) Interaction of Bacillus subtilis phage phi105 repressor with operator DNA: a genetic analysis. EMBO J 7:859–866

    Google Scholar 

  • Kil YV, Mironov VN, Goryshin IV, Kreneva RA, Perumov DA (1992) Riboflavin operon in Bacillus subtilis: unusual symmetric arrangement of the regulatory region. Mol Gen Genet 233:483–486

    Google Scholar 

  • Kreneva RA, Perumov DA (1990) Genetic mapping of regulatory mutations of Bacillus subtilis riboflavin operon. Mol Gen Genet 222:467–469

    Google Scholar 

  • Lee CY, Meighen EA (1992) The Lux genes in Photobacterium-leiognathi are closely linked with genes corresponding in sequence to riboflavin synthesis genes. Biochem Biophys Res Commun 186:690–697

    Google Scholar 

  • Lu Y, Chen N-Y, Paulus H (1991) Identification of aecA mutations in Bacillus subtilis as nucleotide substitutions in the untranslated leader region of the aspartokinase II operon. J Gen Microbiol 137:1135–1144

    Google Scholar 

  • Ludwig HC, Lottspeich F, Henschen A, Ladenstein R, Bacher A (1987) Heavy riboflavin synthase of Bacillus subtilis. Primary structure of the beta subunit. J Biol Chem 262:1016–1021

    Google Scholar 

  • Mironov VN, Kraev AS, Chernov BK, Ulianov AV, Golova UB, Pozmogova GE, Simonova ML, Gordeev VK, Stepanov AI, Skryabin KG (1989) Genes of riboflavin biosynthesis of Bacillus subtilis. Complete primary structure and model of organization. Dokl Akad Nauk SSSR (Russian) 305:482–487

    Google Scholar 

  • Mironov VN, Perumov DA, Kraev AS, Stepanov AI, Skryabin KG (1990) Unusual structure of Bacillus subtilis riboflavin operon regulatory region. Mol Biol (Mosk) (Russian) 24:256–261

    Google Scholar 

  • Morozov GI, Rabinovich PM, Bandrin SV, Stepanov AI (1984) Bacillus subtilis riboflavin operon organization. Mol Gen Mikrobiol Virusol (Russian) 7:43–46

    Google Scholar 

  • Osina NK, Kalambet YA, Alexandrov AA (1986) Electron microscopic analysis of the transcription of the Bacillus subtilis riboflavin operon inserted into the hybrid plasmid pLP102. FEBS Lett 196:75–78

    Google Scholar 

  • Pang ASH, Nathoo S, Wong SL (1991) Cloning and characterization of a pair of novel genes that regulate production of extracellular enzymes in Bacillus subtilis. J Bacteriol 173:46–54

    Google Scholar 

  • Panina LI, Iomantas YV, Haikinson MI, Pabinovich PM (1983) Cloning of the riboflavin biosynthesis operon genes on plasmid vector pBR322 in Escherichia coli. Genetika (Russian) 19:174–176

    Google Scholar 

  • Piggot PJ, Hoch JA (1985) Revised genetic linkage map of Bacillus subtilis. Microbiol Rev 59:158–179

    Google Scholar 

  • Prodromou C, Artymiuk PJ, Guest JR (1992) The aconitase of Escherichia coli: nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate isomerases. Eur J Biochem 204:599–609

    Google Scholar 

  • Quinn CL, Stephenson BT, Switzer RL (1991) Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J Biol Chem 166:9113–9127

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schot K, Kellermann J, Lottspeich F, Bacher A (1990) Riboflavin synthases of Bacillus subtilis. Purification and amino acid sequence of the alpha subunit. J Biol Chem 265:4204–4210

    Google Scholar 

  • Shaw GC, Fulco AJ (1992) Barbiturate-mediated regulation of expression of the cytochrome P450-BM-3 gene of Bacillus megaterium by Bm3Rl protein. J Biol Chem 267:5515–5526

    Google Scholar 

  • Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072–1078

    Google Scholar 

  • Strauch MA, Spiegelman GB, Perego M, Johnson WC, Burbulis D, Hoch JA (1989) The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J 8:1615–1621

    Google Scholar 

  • Volk R, Bacher A (1990) Studies on the 4-carbon precursor in the biosynthesis of riboflavin. Purification and properties of l-3,4-butanone-4-phosphate synthase. J Biol Chem 265:19479–19485

    Google Scholar 

  • Volk R, Bacher A (1991) Biosynthesis of riboflavin. Studies on the mechanism of l-3,4-butanone-4-phosphate synthase. J Biol Chem 266:20610–20618

    Google Scholar 

  • Wang L-F, Doi RH (1990) Complex character of senS, a novel gene regulating expression of extracellular-protein genes of Bacillus subtilis. J Bacteriol 172:1939–1947

    Google Scholar 

  • Xanthoudakis S, Miao G, Wang F, Pan Y-CE, Curran T (1992) Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 11:3323–3335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Hennecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironov, V.N., Kraev, A.S., Chikindas, M.L. et al. Functional organization of the riboflavin biosynthesis operon from Bacillus subtilis SHgw . Molec. Gen. Genet. 242, 201–208 (1994). https://doi.org/10.1007/BF00391014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391014

Key words

Navigation