Skip to main content
Log in

Particle-bound phytochrome: Association with a ribonucleoprotein fraction from Cucurbita pepo L.

  • Published:
Planta Aims and scope Submit manuscript

Summary

In the absence of ethylenediaminetetraacetic acid (EDTA) and added Mg2+, the phytochrome, RNA, protein, cytochrome c oxidase and NADPH-cytochrome c reductase in 20000 x g pellets from hypocotyl hooks of red-irradiated Cucurbita seedlings are more or less coincident in a single, broad band on linear sucrose gradients. The inclusion of 3 mM EDTA in the extraction, resuspension and gradient media has three major effects: (a) The phytochrome profile splits into two main bands; (b) the main RNA population shifts to a sharp peak which co-sediments with the “lighter” phytochrome band at 31S; (c) the main NADPH-cytochrome c reductase peak shifts to a lower density. This indicates that the EDTA dissociates a rough-endoplasmic-reticulum fraction into separate membrane and ribonucleoprotein (RNP) components, and that part of the phytochrome is associated with the latter. The 31S RNP fraction is 35–40% RNA, has a 260/235 nm absorption ratio of 1.36 and the RNA dissociates into small fragments in sodium dodecyl sulfate. More than 90% of the phytochrome and RNA in the isolated 31S fraction becomes pelletable upon the addition of 10 mM Mg2+. Higher Mg2+ levels release the phytochrome and some of the other protein present from the RNA which remains pelletable. The data indicate that the 31S RNP fraction may be degraded ribosomal material with extraneously bound protein, including phytochrome. Several aspects of phytochrome-binding to particulate fractions which have been reported in the literature are consistent with an interaction of Pfr with ribosomal material—degraded or otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EDTA:

ethylenediaminetetraacetic acid

ER:

endoplasmic reticulum

Pfr :

far-red-absorbing form of phytochrome

Pr :

red-absorbing form of phytochrome

RNase:

ribonuclease

RNP:

ribonucleoprotein

SDS:

sodium dodecyl sulfate

References

  1. Acton, G. J.: Phytochrome controlled acid RNAse: An “attached” protein of ribosomes. Phytochem. 13, 1303–1310 (1974)

    Article  Google Scholar 

  2. Butler, W. L., Norris, K. H.: The spectrophotometry of dense light-scattering material. Arch. Biochem. Biophys. 87, 31–40 (1960)

    PubMed  Google Scholar 

  3. Dyer, T. A., Payne, P. I.: Katabolism of plant cytoplasmic ribosomes: A study of the interaction between ribosomes and ribonuclease. Planta (Berl.) 117, 259–268 (1974)

    Google Scholar 

  4. Fleck, A., Munro, H. N.: The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochim. biophys. Acta (Amst.) 55, 571–583 (1962)

    Article  Google Scholar 

  5. Hsiao, T. C.: Ribonuclease activity associated with ribosomes from Zea mays. Plant Physiol. 43, 1355–1361 (1968)

    Google Scholar 

  6. Kay, J. E., Ahern, T., Atkins, M.: Control of protein synthesis during the activation of lymphocytes by phytohaemagglutinin. Biochim. biophys. Acta (Amst.) 247, 322–334 (1971)

    Google Scholar 

  7. Leaver, C. J.: Molecular integrity of chloroplast ribosomal ribonucleic acid. Biochem. J. 135, 237–240 (1973)

    PubMed  Google Scholar 

  8. Loening, U. E.: RNA structure and metabolism. Ann. Rev. Plant Physiol. 19, 37–70 (1968)

    Article  Google Scholar 

  9. Lord, J. M., Kagawa, T., Moore, T. S., Beevers, H.: Endoplasmic reticulum, as the site of lecithin formation in castor bean endosperm. J. Cell Biol. 57, 659–667 (1973)

    Article  Google Scholar 

  10. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    PubMed  Google Scholar 

  11. Marmé, D., Boisard, J., Briggs, W. R.: In vitro binding properties of phytochrome to a membrane fraction. Proc. nat. Acad. Sci. (Wash.) 70, 3861–3865 (1973)

    Google Scholar 

  12. Marmé, D., Mackenzie, J. M., Boisard, J., Briggs, W. R.: The isolation and partial characterisation of a membrane fraction containing phytochrome. Plant Physiol. 54, 263–271 (1974)

    Google Scholar 

  13. Martin, T. E., Wool, I. G., Castles, J. J.: Dissociation and reassociation of ribosomes from eukaryotic cells. In: Methods in enzymology, vol. 20, p. 417–429, Moldave, K., Grossman, L., ed. New York-London: Acad. Press 1971)

    Google Scholar 

  14. Mohr, H., Appuhn, U.: Die Keimung von Lactuca-Achänen unter dem Einfluß des Phytochromsystems und der Hochenergiereaktion der Photomorphogenese. Planta (Berl.) 60, 274–288 (1963)

    Google Scholar 

  15. Payne, P. I., Loening, U. E.: Ribosome breakdown accompanying the isolation of pea root microsomes. An analysis by polyacrylamide gel electrophoresis. Biochim. biophys. Acta (Amst.) 224, 128–135 (1970)

    Google Scholar 

  16. Perry, R. P., La Torre, J., Kelley, D. E., Greenberg, J. R.: On the lability of poly (A) sequences during extraction of messenger RNA from polyribosomes., Biochim. biophys. Acta (Amst.) 262, 220–226 (1972)

    Google Scholar 

  17. Petermann, M. L.: The physical and chemical properties of ribosomes. Amsterdam: Elsevier 1964

    Google Scholar 

  18. Quail, P. H.: Particle-bound phytochrome: spectral properties of bound and unbound fractions. Planta (Berl.) 118, 345–355 (1974)

    Google Scholar 

  19. Quail, P. H.: In vitro binding of phytochrome to a particulate fraction: a function of light dose and steady-state Pfr level. Planta (Berl.) 118, 357–360 (1974)

    Google Scholar 

  20. Quail, P. H.: Particle-bound phytochrome: The nature of the interaction between pigment and particulate fractions. Planta (Berl.) 123, 235–246 (1975)

    Google Scholar 

  21. Quail, P. H., Marmé, D., Schäfer, E.: Particle-bound phytochrome from maize and pumpkin. Nature (Lond.) New Biol. 245, 189–191 (1973)

    Google Scholar 

  22. Quail, P. H., Schäfer, E.: Particle-bound phytochrome: a function of light dose and steady-state Pfr concentration. J. Membr. Biol. 15, 393–404 (1974)

    PubMed  Google Scholar 

  23. Rubinstein, B., Drury, K. S., Park, R. B.: Evidence for bound phytochrome in oat seedlings. Plant Physiol. 44, 105–109 (1969)

    Google Scholar 

  24. Sabatini, D. D., Tashiro, Y., Palade, G. E.: On the attachment of ribosomes to microsomal membranes. J. molec. Biol. 19, 503–524 (1966)

    PubMed  Google Scholar 

  25. Schäfer, E.: Analysis of the binding of phytochrome to particulate fractions. Photochem. Photobiol., in press (1974)

  26. Smith, L.: Cytochrome c oxidase. In: Methods in biochemical analysis, p. 427–434, Glick, D., ed. New York: Interscience 1955

    Google Scholar 

  27. Wettenhall, R. E. H., Wool, I. G., Sherton, C. C.: Two physically and functionally distinct forms of eukaryotic 40S ribosomal subunits. Biochem. 12, 2403–2411 (1973)

    Google Scholar 

  28. Wibo, M., Amar-Costesac, A., Berthet, J., Beaufay, H.: Electron microscope examination of subcellular fractions. J. Cell Biol. 51, 52–71 (1971)

    Article  PubMed  Google Scholar 

  29. Williamson, F. A., Morré, D. J., Jaffe, M. J.: Association of phytochrome with roughsurfaced endoplasmic reticulum fractions from soybean hypocotyls. Plant Physiol., in press (1974)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quail, P.H. Particle-bound phytochrome: Association with a ribonucleoprotein fraction from Cucurbita pepo L.. Planta 123, 223–234 (1975). https://doi.org/10.1007/BF00390701

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390701

Keywords

Navigation