Skip to main content
Log in

Thymine content of sea water as a measure of biosynthetic potential

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A hydrolysis procedure along with a high-pressure liquid chromatographic procedure is given enabling simple and reliable thymine determinations in the nanogram range in different fractions of sea-water samples taken from three different locations in the Northern Adriatic Sea. The levels corresponded to 1–3 μg DNA per liter. From total polyanionic thymine, which had been precipitated as the cetyltrimethylammonium salt, the highest percentage was linked to the particulate fraction, with a definite subsurface minimum at 10 to 15 m. There was a corresponding maximum of a high molecular “non-particulate” thymine-containing fraction at the corresponding depth. From the bottom at 30 m upwards to about 20 m, a low molecular thymine-containing material has been found. Remarkably these basic features were common to all three locations, one of which was supposed to be in clean water, one near a thickly settled, touristic area, and the other in front of a large river delta coming from industrial hinterland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Barner, H.D. and S.S. Cohen: Synchronization of division of a thymine-less mutant of Escherichia coli. J. Bact. 72, 115–123 (1956)

    PubMed  Google Scholar 

  • Behki, R.M. and W.C. Schneider: Intracellular distribution of deoxyribosidic compounds in normal and regenerating rat liver and in Novikoff hepatoma. Biochim. biophys. Acta 61, 663–667 (1962)

    PubMed  Google Scholar 

  • Blum, J.J. and G.M. Padilla: Studies on synchronized cells: the time course of DNA, RNA, and protein synthesis in Astasia longa. Expl. Cell Res. 28, 512–523 (1962)

    Google Scholar 

  • Breter, H.-J., F. Hundt and R.K. Zahn: the determination of the DNA base composition in 19 species of Adriatic sponges with high-pressure liquid cation-exchange chromatography. Z. Naturf. (Sekt. C) 31, 554–557 (1976)

    Google Scholar 

  • —, M. Schnaus, W.E.G. Müller und R.K. Zahn: Eine quantitative Bestimmungsmethode des Uracilgehaltes biologischen Materials im Nanogramm-Bereich mit Hilfe der Hochdruck-Flüssigchromatographie. Z. Naturf. (Sekt. C) 29, 139–141 (1974a)

    Google Scholar 

  • —, D. Weinblum and R.K. Zahn: A highly sensitive method for the estimation of pyrimidine dimers in DNA by high-pressure liquid cation-exchange chromatography. Analyt. Biochem. 61, 362–366 (1974b)

    PubMed  Google Scholar 

  • — and R.K. Zahn: A rapid separation of the four major deoxyribonucleosides and deoxyinosine by high-pressure liquid cation-exchange chromatography. Analyt. Biochem. 54, 346–352 (1973)

    PubMed  Google Scholar 

  • Chen, P.K., R.V. Citarella, O. Salazar and R.C. Colwell: Properties of two marine bacteriophages. J. Bact. 91, 1136–1139 (1966)

    PubMed  Google Scholar 

  • Cook, J.R.: Photo-inhibition of cell division and growth in euglenoid flagellates. J. Cell. Physiol. 71, 177–184 (1968)

    PubMed  Google Scholar 

  • Darnell, J.E., Jr.: Ribonucleic acids from animal cells. Bact. Rev. 32, 262–290 (1968)

    PubMed  Google Scholar 

  • Dubin, D.T. and A. Günolp: Minor nucleotide composition of ribosome precursor and ribosomal ribonucleic acid in Escherichia coli. Biochim. biophys. Acta 134, 106–123 (1967)

    Google Scholar 

  • Edmunds, L.N., Jr.: Replication of DNA and cell division in synchronously dividing cultures of Euglena gracilis. Science, N.Y. 145, 266–268 (1964)

    Google Scholar 

  • Friz, C.T.: The biochemical composition of the free-living amoebae Chaos chaos, Amoeba dubia and Amoeba proteus. Comp. Biochem. Physiol. 26, 81–90 (1968)

    Article  PubMed  Google Scholar 

  • Gauchel, F.D., G. Gauchel, K. Beyermann und R.K. Zahn: Quantitative Bestimmung von DNA in Geweben durch Thymin-Analyse. Teil I. Gaschromatographische Bestimmung. Z. analyt. Chem. 259, 177–183 (1972)

    Google Scholar 

  • Gauchel, G., F.D. Gauchel, K. Beyermann und R.K. Zahn: Quantitative Bestimmung von DNA in Geweben durch Thymin-Analyse. Teil II. Bestimmung durch Flüssigkeitschromatographie mit hohen Eingangsdrücken. Z. analyt. Chem. 259, 183–187 (1972)

    Google Scholar 

  • Herbes, S.E., H.E. Allen and K.H. Maucy: Enzymatic characterization of soluble organic phosphorus in lake water. Science, N.Y. 187, 432–434 (1975)

    Google Scholar 

  • Holm-Hansen, O.: Algae: amounts of DNA and organic carbon in single cells. Science, N.Y. 163, 87–88 (1969)

    Google Scholar 

  • —: ATP-levels in algal cells as influenced by environmental conditions. Pl. Cell Physiol., Tokyo 11, 689–700 (1970)

    Google Scholar 

  • — and C.R. Booth: The measurement of ATP in the ocean and its ecological significance. Limnol. Oceanogr. 11, 510–519 (1966)

    Google Scholar 

  • —, W.H. Sutcliffe, Jr. and J. Sharp: Measurement of DNA in the ocean and its ecological significance. Limnol. Oceanogr. 13, 507–514 (1968)

    Google Scholar 

  • Hönig, W., R.K. Zahn and W. Heitz: A method for characterization and fractionation of DNA by continuous turbidimetric evaluation of the CTA-DNA precipitate. Analyt. Biochem. 55, 34–50 (1973)

    PubMed  Google Scholar 

  • Jervell, K.F., C.R. Diniz and G.C. Mueller: The determination of uridine and thymine in small samples of nucleic acid-protein residues. Archs Biochem. Biophys. 78, 157–164 (1958)

    Google Scholar 

  • Kissane, J.M. and E. Robins: The fluorometric measurement of DNA in animal tissues with special reference to the central nervous system. J. biol. Chem. 233, 184–188 (1958)

    PubMed  Google Scholar 

  • Lean, D.R.S.: Phosphorus dynamics in lake water. Science, N.Y., 179, 678–680 (1973)

    Google Scholar 

  • —: Phosphorus dynamics in lake water: contribution by death and decay (Replique to R.A. Minear). Science, N.Y. 187, p. 455 (1975)

    Google Scholar 

  • Leedale, G.F.: Euglenoid flagellates, 45 pp. Englewood Cliffs, N.J.: Prentice Hall 1967

    Google Scholar 

  • Leslie, J.: The nucleic acid content of tissues and cells. In: The nucleic acids. Vol. II. pp 1–50. Ed. by E. Chargaff and J.N. Davidson. New York, N.Y.: Academic Press 1955

    Google Scholar 

  • Luria, S.E.: The bacterial protoplasm: composition and organization. In: The Bacteria, Vol. I. pp 1–34. Ed. by I.C. Gunsalus and R.Y. Stanier. New York, N.Y.: Academic Press 1960

    Google Scholar 

  • Minear, R.A.: Characterization of naturally occuring dissolved organophosphorus compounds. Envir. Sci. Technol. 6, 431–437 (1972)

    Google Scholar 

  • —: Phosphorus dynamics in lake water: contribution by death and decay. Science, N.Y. 187, 454–455 (1975)

    Google Scholar 

  • Mirsky, A.E. and H. Ris: The deoxyribonucleic acid content of animal cells and its evolutionary significance. J. gen. Physiol. 34, 451–462 (1951)

    Article  PubMed  Google Scholar 

  • Miura, K.I.: Specificity in the structure of transfer-RNA. Prog. nucl. Acid Res. molec. Biol. 6, 39–82 (1967)

    Google Scholar 

  • Ogur, M., S. Minckler, G. Lindegren and C.C. Lindegren: The nucleic acids in a polyploid series of Saccharomyces. Archs Biochem. Biophys. 40, 175–184 (1952)

    Google Scholar 

  • Padilla, G.M. and T.W. James: Synchronization of cell division in Astatia longa on a chemically defined medium. Expl. Cell Res. 20, 401–415 (1960)

    Google Scholar 

  • Potter, R.L., S. Schlesinger, V. Buettner-Janusch and L. Thompson: The isolation of the pyrimidine deoxyribonucleotides from the acid-soluble extract of thymus. J. biol. Chem. 226, 381–394 (1957)

    PubMed  Google Scholar 

  • Riley, J.P. and R. Chester: Introduction to marine chemistry. III. Particulate matter in the sea, pp 200–218. Ed. by J.P. Riley and R. Chester. New York, N.Y.: Academic Press 1971

    Google Scholar 

  • Rosenberg, E.: Purines and pyrimidines in sediments from the experimental mohole. Science, N.Y. 146, 1680–1681 (1964)

    Google Scholar 

  • Rotherham, J. and W.C. Schneider: Deoxyribosyl compounds in animal tissues. J. biol. Chem. 232, 853–866 (1958)

    PubMed  Google Scholar 

  • Schaechter, M., O. Maaløe and N.O. Kjelgaard: Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J. gen. Microbiol. 19, 592–606 (1958)

    PubMed  Google Scholar 

  • Škrivanić, A.: Hydrographic conditions in the North Adriatic area (1968–1970). Thalassia jugosl. 7, 567–589 (1971)

    Google Scholar 

  • Uden, N. van and J.W. Fell: Marine yeasts. In: Advances in microbiology of the sea, pp 167–201. Ed. by M.R. Droop and E.J.F. Wood. New York, N.Y.: Academic Press 1968

    Google Scholar 

  • Velden, W. van der and A.W. Schwartz: Purines and pyrimidines in sediments from Lake Erie. Science, N.Y. 185, 691–693 (1974)

    Google Scholar 

  • Vischer, E. and E. Chargaff: The composition of the pentose nucleic acids of yeast and pancreas. J. biol. Chem. 176, 715–734 (1948)

    Google Scholar 

  • Zahn, R.K.: Die zusammensetzung der Desoxyribonukleinsäuren. In: Biochemisches Taschenbuch, Vol. I. pp 736–758. Ed. by H.M. Rauen. Berlin-Göttingen-Heidelberg: Springer Verlag 1964

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Hamburg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breter, H.J., Kurelec, B., Müller, W.E.G. et al. Thymine content of sea water as a measure of biosynthetic potential. Marine Biology 40, 1–8 (1977). https://doi.org/10.1007/BF00390621

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390621

Keywords

Navigation