Skip to main content
Log in

Écoulements de fluides parfaits en deux variables indépendantes de type espace. Réflexion d'un choc plan par un diédre compressif

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Résumé

We consider the Euler equations of a perfect fluid having only two independent space-like variables, which account for the stationary 2-dimensional or axisymmetrical 3-dimensional cases as well as the 2-dimensional Riemann problem. We show that the pressure and the angle between an axis and the velocity field satisfy a first-order system which turns out to be elliptic in the subsonic zone. In particular, the pressure satisfies a maximum principle which has not been stated before, to the best of my knowledge. Using this and the Bernouilli law, we give various a priori estimates of the pressure, the density, the enthalpy, and the velocity in the problem of the reflection of a shock wave by a wedge. We also bound the size of the subsonic region and the force that the fluid applies to the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. G. Ben-Dor. Shock wave reflexion phenomena. Springer-Verlag, 1991.

  2. T. Chang & G.-Q. Chen. Diffraction of planar shock along a compressive corner. Acta Mathematica.

  3. T. Chang & L. Hsiao. The Riemann problem and interaction of waves in gas dynamics. Pitman Surveys in Pure and Appl. Math. 41. Longman, 1989.

  4. H. Glaz, P. Colella, I.I. Glass & R. Deschambault. A detailed numerical, graphical and experimental study of oblique shock wave reflections. Lawrence Berkeley Report, 1985.

  5. J. Glimm, C. Klingenberg, O. Mcbryan, B. Plohr, D. Sharp & S. Yaniv. Front tracking and twodimensional Riemann problems. Advances in Appl. Math., 6, 259–290, 1985.

    Google Scholar 

  6. A. Heibig & D. Serre. Etude variationnelle du problème de Riemann. J. Diff. Eqns., 96, 56–88, 1992.

    Google Scholar 

  7. L. F. Henderson, Regions and boundaries of diffracting shock wave systems. Z. Angew. Math. Mech., 67, 73–86, 1987.

    Google Scholar 

  8. H. Hornung. Regular and Mach reflection of shock waves. Ann. Rev. Fluid Mech., 18, 33–58, 1986.

    Article  Google Scholar 

  9. P. D. Lax, Hyperbolic systems of conservation laws, II. Comm. Pure Appl. Math., 10, 537–566, 1957.

    Google Scholar 

  10. M. J. Lighthill, The diffraction of blast. I. Proc. Royal Soc. London A, 198, 454–470, 1949.

    Google Scholar 

  11. A. Sakurai, L. F. Henderson, K. Takayama, Z. Walenta & P. Colella. On the von Neumann paradox of weak Mach reflection. Fluid Dyn. Research, 4, 333–345, 1989.

    Article  Google Scholar 

  12. D. Serre, Oscillations non-linéaires de haute fréquence; dim=1. Collège de France Seminar, Vol XI. J.-L. Lions & H. Brezis eds., Longman, à paraître.

  13. Shuli Yang. Numerical Riemarm solutions in multi-pieces for 2-D gas dynamics. Preprint SC 92-20, 1992. ZIB, Berlin.

  14. V. M. Teshukov. Stability of regular shock reflection. Zh. Prikl. Mekh. Tekh. Fiz., 2, 26–33, 1989.

    Google Scholar 

  15. M. Van Dike. An album of fluid motion. Parabolic Press, Stanford, 1982.

    Google Scholar 

  16. J. Von Neumann. Collected works, Vol 6, Pergamon, 1963.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serre, D. Écoulements de fluides parfaits en deux variables indépendantes de type espace. Réflexion d'un choc plan par un diédre compressif. Arch. Rational Mech. Anal. 132, 15–36 (1995). https://doi.org/10.1007/BF00390347

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390347

Navigation