Skip to main content
Log in

Decrease in glucokinase and glucose-6-phosphatase and increase in hexokinase in putative preneoplastic lesions of rat liver

  • Original Papers
  • Experimental Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Summary

Preneoplastic liver lesions were produced in female Wistar rats by oral administration of 2-acetyl-aminofluorene for 165 days succeeded by a carcinogen-free standard diet up to 420 days. During the treatment numerous altered hepatic foci (AHF) and hyperplastic nodules (HN) were detected histochemically by a focal decrease or lack of adenosine-5-triphosphatase and glucose-6-phosphatase (G-6-Pase) activities. In addition, the immunohistochemically demosntrable amount of L-type pyruvate kinase was clearly reduced. The histochemically demonstrated decrease of G-6-Pase was substantiated by microbiochemical determination of the enzyme activity in microdissected material. Moreover, during the experimental period a continuous decrease in glucokinase and an increase in hexokinase was detected microbiochemically within AHF and HN. These alterations indicate, a shift in the carbohydrate metabolism from gluconeogenesis to glucose utilization and pentose-phosphate-pathway for biosynthesis of nucleic acids. Beside other oncofetal markers, HK may be used as indicator of the early stages of liver carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altmann HW (1978) Pathology of human liver tumors. In: Remmer H, Bolt H, Bannasch P, Popper H (eds) Primary liver tumors. Proceedings of the 25th Falk Symposium, Titisee 1977. MTP Press, Lancaster, pp 53–71

    Google Scholar 

  • Bannasch P (1968) The cytoplasm of hepatocytes during carcinogenesis. Re Res Cancer Res 19:1–100

    Google Scholar 

  • Bannasch P (1984) Sequential, cellular changes during chemical carcinogenesis. J. Cancer Res Clin Oncol 108:11–22

    PubMed  Google Scholar 

  • Bannasch P (1986) Preneoplastic lesions as end points in carcinogenicity testing. I. Hepatic preneoplasia. Carcinogenesis 7:689–695

    PubMed  Google Scholar 

  • Bannasch P, Angerer (1974) Glykogen und Glukose-6-Phosphatase während der Kanzerisierung der Rattenleber durch N-Nitrosomorpholin. Arch Geschwulstforsch 43:105–114

    PubMed  Google Scholar 

  • Bannasch P, Klinge O (1971) Hepatocellulãre Glykogenose und Hepatombildung beim Menschen. Virchows Arch (Pathol Anat) 352:157–164

    Google Scholar 

  • Bannasch P, Hacker HJ, Klimek F, Mayer D (1984) Hepatocellular glycogenosis and related pattern of enzymatic changes during hepatocarcinogenesis. Adv Enzyme Regul 22:97–121

    Article  PubMed  Google Scholar 

  • Bannasch P, Müller HA (1964 Lichtmikroskopische Untersuchungen über die Wirkung von N-Nitrosomorpholin auf die Leber von Ratte und Maus. Arzneim Forsch (Drug Res) 14:805–814

    Google Scholar 

  • Berenblum I, Shubik P (1947) The role of croton oil application, associated with a single painting of a carcinogen, in tumor induction of the mouse's skin. Br J Cancer 1:379–382

    Google Scholar 

  • Brinkmann A, Katz N, Sasse D, Jungermann K (1978) Increase of gluconeogenic and decrease of glycolytic capacity of rat liver with a change of the metabolic zonation after partial hepatectomy. Hoppe Seylers Z Physiol Chem 359:1561–1571

    PubMed  Google Scholar 

  • Cameron R, Kellen J, Kolin A, Malkin A, Farber E (1978) γ-Glutamyltransferase in putative premalignant liver cell populations during hepatocarcinogenesis. Cancer Res 38:823–829

    PubMed  Google Scholar 

  • Coggin JH Jr, anderson NG (1974) Cancer, differentiation and embryonic antigens: Some central problems. Adv Cancer Res 19:105–166

    PubMed  Google Scholar 

  • Crisp DM, Pogson CJ (1972) Glycolytic and gluconeogenic enzyme activities in parenchymal and non-parenchymal cells from mouse liver. Biochem J 126:1009–1023

    PubMed  Google Scholar 

  • Criss WE (1971) A review of isozymes in cancer. Cancer Res 31:1523–1542

    PubMed  Google Scholar 

  • Eigenbrodt E (1986) New aspects of carbohydrate metabolism in tumor cells. Food Chem Toxicd 23:863

    Article  Google Scholar 

  • Emmelot P, Scherer E (1980) The first relevant cell stage in rat liver carcinogenesis. Biochim Biophys Acta 605:247–304

    Article  PubMed  Google Scholar 

  • Enomot K, Farber E (1982) Kinetics of phenotypic maturation of remodeling of hyperplastic nodules during liver carcinogenesis. Cancer Res 42:2330–2335

    PubMed  Google Scholar 

  • Farber E (1984a) Cellular biochemistry of the stepwise development of cancer with chemicals: G.H.A. Clowes memorial lecture. Cancer Res 44:5463–5474

    PubMed  Google Scholar 

  • Farber E (1984b) Chemical carcinogenesis: a current biological perspective. Carcinogenesis 5:1–5

    PubMed  Google Scholar 

  • Farber E (1984c) The multistep nature of cancer development. Cancer Res 44:4217–4223

    PubMed  Google Scholar 

  • Farber E, Cameron RG (1980) The sequential analysis of cancer development. Adv Cancer Res 31:125–226

    PubMed  Google Scholar 

  • Fischer G (1986) Increased UDP-glucuronyltransferase and gamma-glutamyltranspeptidase in enzyme-altered rat liver lesions produced by low doses of aflatoxin B1. Virchows Arch (Cell Pathol) 51:443–460

    Google Scholar 

  • Fischer G, Katz N, Fischer W, Schauer A (1982a) Biochemical quantification on ATPase activities during liver carcinogenesis. Cancer Detect Prev 5:73

    Google Scholar 

  • Fischer G, Katz N, Fischer W, Schauer A (1982b) Mikrodissektion und Mikroanalytik an Frühstadien der chemischen Leberkan-zerogenese. Verh Dtsch Ges Pathol 66:471

    Google Scholar 

  • Fischer G, Schauer A, Katz N (1982c) Fascilitation of microdissection by use of a new microscopic and micromanipulatory unit. Naturwissenschaften 69:146

    PubMed  Google Scholar 

  • Fischer W, Ick M, Katz NR (1982) Reciprocal distribution of hexokinase and glucokinase in the periportal and perivenous zone of the rat liver acinus. Z Physiol Chem 363:375–380

    Google Scholar 

  • Fischer W, Wagle S, Katz NR (1983) Altered distribution of hexokinase and glucokinase between parenchymal and non-parenchymal cells of rat liver after methapyrilene intoxication. Biochem Biophys Res Commun 115:1090–1095

    PubMed  Google Scholar 

  • Fischer G, Lilienblum W, Ullrich D, Bock KW (1986a) Immunohistochemical differentiation of γ-glutamyltranspeptidase in focal lesions and in zone I of rat liver after treatment with chemical carcinogens. Carcinogenesis 7:1405–1410

    PubMed  Google Scholar 

  • Fischer G, Hartmann H, Droese M, Schauer A, Bock KW (1986b) Histochemical and immunohistochemical detection of putative preneoplastic liver foci in women after long-term use of oral contracetives. Virchows Arch (Cell Pathol) 50:321–337

    Google Scholar 

  • Fischer G, Eigenbrodt E, Lodder D, Katz N, Reinacher M (1987) Immunohistochemical demonstration of decreased l-pyruvate kinase in enzyme altered rat liver lesions produced by different carcinogens. Virchows Arch (Cell Pathol) (in press)

  • Friedrich-Freksa H, Gössner W Börner P (1969) Histochemische Untersuchungen der Cancerogenese in der Rattenleber nach Dauergaben von Diäthylnitrosamin. Z Krebsforsch 72:226–239

    PubMed  Google Scholar 

  • Gössner W, Friedrich-Freksa H (1964) Histochemische Untersuchungen über die Glucose-6-Phosphatase in der Rattenleber während der Cancerisierung durch Nitrosamine. Z Naturforsch 19b:862–869

    Google Scholar 

  • Grisham JW (1962) A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver, autoradiography with thymidine-H3. Cancer Res 22:842–849

    PubMed  Google Scholar 

  • Hacker HJ, Moore MA, Mayer D, Bannasch P (1982) Correlative histochemistry of some enzymes of carbohydrate metabolism in preneoplastic and neoplastic lesions in the rat liver. Carcinogenesis 3:1265–1272

    PubMed  Google Scholar 

  • Kalengay MMR, Desmet VJ (1978) Gamma-glutamyl transferase as oncofetal marker of experimental hepatocarcinogenesis in the rat. Scand J Immunol 8:547–556

    Google Scholar 

  • Katz N, Teutsch H, Jungermann K, Sasse D (1977) Heterogenous reciprocal localization of fructose-1,6-bisphosphatase and of glucokinase in microdissected periportal and perivenous rat liver tissue. FEBS Lett 83:272–276

    Article  PubMed  Google Scholar 

  • Klimek F, Mayer D, Bannasch P (1984)_Biochemical microanalysis of glycogen content and glucose-6-phosphatate dehydrogenase activity in focal lesions of the rat liver induced by N-nitrosomorpholine. Carcinogenesis 5:265–280

    PubMed  Google Scholar 

  • Lowry O, Passonneau J (1972) A flexible system of enzymatic analysis. Academic Press, New York

    Google Scholar 

  • Pitot HC, Sirica AE (1980) The stages of initiation and promotion in hepatocarcinogenesis. Biochim Biophys Acta 605:191–215

    Article  PubMed  Google Scholar 

  • Reinacher M (1985) Immunohistochemical demonstration of pyruvate kinase isoenzyme type L as a new and early marker during rat liver carcinogenesis. Food Chem Toxicol 23:865

    Article  Google Scholar 

  • Reinacher M, Eigenbrodt E, Gerbracht U, Zenk G, Timmermann-Trosiener I, Bentley P, Waechter F, Schulte-Hermann R (1986) Pyruvate kinase isoenzymes in altered foci and carcinoma of rat liver. Carcinogenesis 7:1351–1357

    PubMed  Google Scholar 

  • Sato K, Takaya S, Imai F, Hatayama I, Ito N (1978) Different deviation patterns of carbohydrate-metabolizing enzymes in primary rat hepatomas induced by different chemical carcinogens. Cancer Res 38:3086–3093

    PubMed  Google Scholar 

  • Sato K, Hatayama I, Hoshino K, Imai F (1981) Enzyme deviation patterns in primary rat hepatomas induced by sequential administration of two chemically different carcinogens. Cancer Res 41:4147–4153

    PubMed  Google Scholar 

  • Schapira F (1973) Isozymes and cancer. Adv Cancer Res 18:77–153

    PubMed  Google Scholar 

  • Schauer A, Kunze E (1968) Enzymhistochemische und autoradiographische Untersuchungen während der Cancerisierung der Rattenleber mit Diäthylnitrosamin. Z Krebsforsch 70:252–266

    PubMed  Google Scholar 

  • Sharma RM, Sharma C, Donnelly AJ Morris HP, Weinhouse S (1965) Glucose-ATP phosphotransferases during hepatocarcinogenesis. Cancer Res 25:193–199

    PubMed  Google Scholar 

  • Tatematsu M, Nagamine Y, Farber E (1983) Redifferentiation as a basis for remodeling of carcinogen-induced hepatocyte nodules to normal appearing liver. Cancer Res 43:5049–5058

    PubMed  Google Scholar 

  • Wachstein M, Meisel E (1957) Histochemistry of hepatic phosphatases at a physiologic pH. Am J Clin Pathol 27:13–23

    PubMed  Google Scholar 

  • Zierz S, Katz N, Jungermann K (1983) Distribution of pyruvate kinase type L and M2 in microdissected periportal and perivenous rat liver tissue with different dietary states. Hoppe-Seylers Z Physiol Chem 364:1447–1453

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, G., Ruschenburg, I., Eigenbrodt, E. et al. Decrease in glucokinase and glucose-6-phosphatase and increase in hexokinase in putative preneoplastic lesions of rat liver. J Cancer Res Clin Oncol 113, 430–436 (1987). https://doi.org/10.1007/BF00390036

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390036

Key words

Navigation