Skip to main content

An ecophysiological study of some meiofauna species inhabiting a sandy beach at Bermuda

Abstract

The dominant nematode and harpacticoid species inhabiting a sheltered beach at Bermuda were characterized by their vertical distribution in the sediment, by their tolerance of high temperature under oxic and anoxic conditions, and by their tolerance of extreme pH-values. In 4 species of nematodes the respiratory rate proved to be inversely proportional to the depth at which the species occurs, and directly proportional to the size of the buccal cavity. One species, the nematode Paramonhystera n.sp., is more temperature resistant at zero or near zero pO2 than at atmospheric oxygen pressure; it is the first marine metazoan in which it can be shown that a specific biological process is favourably affected by anoxic conditions if compared with the situation at normal pO2.

This is a preview of subscription content, access via your institution.

Literature Cited

  1. Alderdice, D.F.: Factor combinations: responses of marine poikilotherms to environmental factors acting in concert. In: Marine ecology. Vol. 1. Environmental factors, Pt 3. pp 1659–1722. Ed. by O. Kinne. London: Wiley Interscience 1972

    Google Scholar 

  2. Atkinson, H.J.: The respiratory physiology of the marine nematodes Enoplus brevis (Bastian) and E. communis (Bastian). I. The influence of oxygen tension and size. J. exp. Biol. 59, 255–266 (1973a)

    Google Scholar 

  3. —: The respiratory physiology of the marine nematodes Enoplus brevis (Bastian) and E. communis (Bastian). II. The effects of changes in the imposed oxygen regime. J. exp. Biol. 59, 267–274 (1973b)

    Google Scholar 

  4. Ax, P.: Populationsdynamik, Lebenszyklen und Fortpflanzungsbiologie der Mikrofauna des Meeressandes. Verh. dt. zool. Ges. 1968, 66–113 (1969)

    Google Scholar 

  5. Baas-Becking, L.G., I.R. Kaplan and D. Moore: Limits of the natural environment in terms of pH and oxidation-reduction potentials. J. Geol. 68, 243–284 (1960)

    Google Scholar 

  6. Boaden, P.J.S.: Behaviour and distribution of the archiannelid Trilobodrilus heideri. J. mar. biol. Ass. U.K. 43, 239–250 (1963)

    Google Scholar 

  7. — and H.M. Platt: Daily migration patterns in an intertidal meiobenthic community. Thalassia jugosl. 7, 1–12 (1971)

    Google Scholar 

  8. Brandt, Th.v.: Parasitenphysiologie, 353 pp. Stuttgart: Gustav Fischer 1972

    Google Scholar 

  9. Bruce, J.R.: Physical factors on the sandy beach. Part II. Chemical changes, carbon dioxide concentration and sulphides. J. mar. biol. Ass. U.K. 15, 553–565 (1928)

    Google Scholar 

  10. Cooper, A.F. and S.D. Van Gundy: Metabolism of glycogen and neutral lipids by Aphelenchus avenae and Caenorhabditis sp. in aerobic, microaerobic and anaerobic environments. J. Nematol. 2, 305–315 (1970)

    Google Scholar 

  11. Coull, B. and W.B. Vernberg: Harpacticoid copepod respiration: Enhydrosoma propinquum and Longipedia helgolandica. Mar. Biol. 5, 341–344 (1970)

    Google Scholar 

  12. DeZio and P. Grimaldi: Ecological aspects of Tardigrada distribution in South Adriatic beaches. Veröff. Inst. Meeresforsch. Bremerh. (Sonderband) 2, 87–94 (1966)

    Google Scholar 

  13. Ellenby, C. and L. Smith: Haemoglobin in Mermis subnigrescens (Cobb), Enoplus brevis (Bastian) and E. communis (Bastian). Comp. Biochem. Physiol. 19, 871–877 (1966)

    Article  Google Scholar 

  14. Fairbairn, D.: Biochemical adaptation and loss of genetic capacity in helminth parasites. Biol. Rev. 45, 29–72 (1970)

    PubMed  Google Scholar 

  15. Fenchel, T.M.: The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special references to the ciliated protozoa. Ophelia 6, 1–182 (1969)

    Google Scholar 

  16. —: The reduction-oxidation properties of marine sediments and the vertical distribution of the microfauna. Vie Milieu 22, 509–521 (1971)

    Google Scholar 

  17. — and R.J. Riedl: The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7, 255–268 (1970)

    Google Scholar 

  18. Fox, H.M. and A.E.R. Taylor: Tolerance of oxygen by aquatic invertebrates. Proc. R. Soc. (Ser. B) 143, 214–225 (1955)

    Google Scholar 

  19. Fraenkel, G.: Resistance to high temperatures in a Mediterranean snail, Littorina neritoides. Ecology 42, 604–606 (1961)

    Google Scholar 

  20. Giere, O.: Oxygen in the marine hygropsammal and the vertical microdistribution of oligochaetes. Mar. Biol. 21, 180–189 (1973)

    Google Scholar 

  21. Gray, J.S.: The behaviour of Protodrilus symbioticus (Giard) in temperature gradients. J. Anim. Ecol. 34, 455–461 (1965)

    Google Scholar 

  22. —: An experimental approach to the ecology of the harpacticid Leptastacus constrictus Lang. J. exp. mar. Biol. Ecol. 2, 278–292 (1968)

    Article  Google Scholar 

  23. Hamilton, W.J.: Life's color code, 238 pp. New York: McGraw-Hill Book Co. 1973

    Google Scholar 

  24. Hopper, B.E., J.W. Fell and R.F. Cefalu: Effect of temperature on life cycles of nematodes associated with the mangrove (Rhizophora mangle) detrital system. Mar. Biol. 23, 293–296 (1973)

    Google Scholar 

  25. Jansson, B.-O.: Salinity resistance and salinity preference of two oligochaetes Aktedrilus monospermaticus Knöllner and Marionina preclitellochaeta n.sp. from the interstitial fauna of marine sandy beaches. Oikos 13, 293–305 (1962)

    Google Scholar 

  26. —: Diurnal and annual variation of temperature and salinity of interstitial water in sandy beaches. Ophelia 4, 173–201 (1967)

    Google Scholar 

  27. —: Quantitative and experimental studies of the interstitial fauna in four Swedish sandy beaches. Ophelia 5, 1–71 (1968)

    Google Scholar 

  28. —: Factors and fauna of a Baltic mud bottom. Limnoligica 7, 47–52 (1969)

    Google Scholar 

  29. Kennedy, G.Y.: Pigments of Annelida, Echiuroidea, Sipunculoidea, Priapuloidea and Phoronidea. In: Chemical zoology, Vol. 4. pp 311–376. Ed. by M. Florkin and B.T. Scheer. New York: Academic Press 1969

    Google Scholar 

  30. Kinne, O.: A programatic study of comparative biology of marine and brackish water animals. Année biol. 33, 87–92 (1957)

    Google Scholar 

  31. —: Temperature: animals — invertebrates. In: Marine ecology. Vol. 1. Environmental factors, Pt 1. pp 407–514. Ed. by O. Kinne. London: Wiley Interscience 1970

    Google Scholar 

  32. Lasker, R., J.B.J. Wells and A.D. McIntyre: Growth, reproduction, respiration and carbon utilization of the sand-dwelling harpacticoid copepod, Asellopsis intermedia. J. mar. biol. Ass. U.K. 50, 147–160 (1970)

    Google Scholar 

  33. Lasserre, P.: Relations énergétiques entre le métabolisme respiratoire et la régulation ionique chez une annélide oligochéte euryhaline, Marionina acheta (Hagen). C.r. hebd. Séanc. Acad. Sci., Paris 268, 1541–1544 (1969)

    Google Scholar 

  34. — et J. Renaud-Mornant: Interprétation écophysiologique des effects de temérature et de salinité sur l'intensité respiratoire de Derocheilocaris remanei biscayensis Delamare 1953 (Crustacea, Mystacocaridea). C. r. hebd. Séanc. Acad. Sci., Paris 272, 1159–1162 (1971)

    Google Scholar 

  35. —— et J. Renaud-Mornant: Resistance and respiratory physiology of intertidal meiofauna to oxygen-deficiency. Neth. J. Sea Res. 7, 290–302 (1973)

    Article  Google Scholar 

  36. McIntyre, A.D.: Ecology of marine meiobenthos. Biol. Rev. 44, 245–290 (1969)

    Google Scholar 

  37. Morgan, L.R. and R. Singh: Cytochrome oxidasesuccinic dehydrogenase activities and the melanin pigment cycle in poikilothermic vertebrates. Comp. Biochem. Physiol. 28, 83–94 (1969)

    Article  PubMed  Google Scholar 

  38. Ott, J.: Determination of fauna boundaries of nematodes in an intertidal flat. Int. Revue ges. Hydrobiol. 57, 645–663 (1972)

    Google Scholar 

  39. — and F. Schiemer: Respiration and anaerobiosis of free living nematodes from marine and limnic sediments. Neth. J. Sea Res. 7, 233–243 (1973)

    Article  Google Scholar 

  40. Pamatmat, M.: Ecology and metabolism of a benthic community in an intertidal sandflat. Int. Revue ges. Hydrobiol. 53, 211–298 (1968)

    Google Scholar 

  41. Riedl, R.J.: Gnathostomulida from America, first record of the new phylum from North America. Science, N.Y. 163, 445–452 (1969)

    Google Scholar 

  42. — and J.A. Ott: A suction corer to yield electric potentials in coastal sediment layers. Senckenbergiana marit. 2, 67–84 (1971)

    Google Scholar 

  43. Rieger, R. und J. Ott: Gezeitenbedingte Wanderungen von Turbellarien und Nematoden eines Nordadriatischen Sandstrandes. Vie Milieu 22, (Suppl.), 425–447 (1971)

    Google Scholar 

  44. Saz, H.J.: Facultative anaerobiosis in the invertebrates: pathways and control systems. Am Zool. 11, 125–135 (1971)

    Google Scholar 

  45. Schiemer, F.: Respiration rates of two species of gnathostomulids. Oecologia (Berl.) 13, 403–406 (1973)

    Google Scholar 

  46. — and A. Duncan: Oxygen consumption of a fresh water benthic nematode, Tobrilus gracilis Bastian. Oecologia (Berl.) 15, 121–126 (1974)

    Google Scholar 

  47. Teal, J. and W. Wieser: The distribution and ecology of nematodes in a Georgia salt marsh. Limnol. Oceanogr. 11, 217–222 (1966)

    Google Scholar 

  48. Theede, H. und A. Ponat: Die Wirkung der Sauerstoffspannung auf die Druckresistenz einiger mariner Wirbelloser. Mar. Biol. 6, 66–73 (1970)

    Google Scholar 

  49. Torres, J.J. and C.P. Mangum: Effects of hyperoxia on survival of benthic marine invertebrates. Comp. Biochem. Physiol. 47A, 17–22 (1974)

    Article  Google Scholar 

  50. Vernberg, F.J.: Dissolved gases: animals. In: Marine ecology. Vol. 1. Environmental factors, Pt 3. pp 1491–1515. Ed. by O. Kinne. London: Wiley Interscience 1972

    Google Scholar 

  51. Westheide, W.: Räumliche und zeitliche Differenzierung im Verteilungsmuster der marinen Interstitialfauna. Verh. dt. zool. Ges. 65, 23–32 (1972)

    Google Scholar 

  52. Wickstrom, C.E. and R.W. Castenholz: Thermophilic ostracod: aquatic metazoan with the highest known temperature tolerance. Science, N.Y. 181, 1063–1064 (1973)

    Google Scholar 

  53. Wieser, W.: Biotopstruktur und Besiedlungsstruktur. Helgoländer wiss. Meeresunters. 10, 359–376 (1964)

    Google Scholar 

  54. — and J. Kanwisher: Respiration and anaerobic survival in some sea weed-inhabiting invertebrates. Biol. Bull. mar. biol. Lab., Woods Hole 117, 594–600 (1959)

    Google Scholar 

  55. —— and J. Kanwisher: Ecological and physiological studies on marine nematodes from a small salt marsh near Woods Hole, Massachusetts. Limnol. Oceanogr. 6, 262–270 (1961)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Contribution No. 593, the Bermuda Biological Station

Communicated by O. Kinne, Hamburg

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wieser, W., Ott, J., Schiemer, F. et al. An ecophysiological study of some meiofauna species inhabiting a sandy beach at Bermuda. Mar. Biol. 26, 235–248 (1974). https://doi.org/10.1007/BF00389254

Download citation

Keywords

  • Oxygen
  • Biological Process
  • Beach
  • Respiratory Rate
  • Vertical Distribution