Skip to main content
Log in

Über den Reaktionsmechanismus pflanzlicher Glutamatdehydrogenase und die Regulation der Aktivität durch Adenosinphosphate, die Energieladung und Ionen

On the mechanism of action of glutamate dehydrogenase from pea seedlings and the regulation of the activity by adenosine phosphates, the energy charge and ions

  • Published:
Planta Aims and scope Submit manuscript

Summary

The mechanism of action and the regulatory properties of glutamate dehydrogenase from pea seedlings (Pisum sativum, var. Späths Violetta) have been investigated by using a highly purified preparation of the enzyme. Kinetic experiments show that the binding of the coenzyme (NAD+ or NADH) and the substrate (L-glutamate or α-ketoglutarate) is sequential. The formation of a quarternary complex with ammonia as additional substrate is questionable, as can be seen from the kinetic data. The anions of the ammonia source have a strong rate-regulating effect on the NADH reaction. The adenosinphosphates AMP, ADP, and ATP exert an inhibiting effect on both the reductive amination and the oxidative deamination reaction. The former reaction is inhibited half as much as the latter. Dead end inhibition offers a sufficient explanation for this effect. The glutamate dehydrogenase from pea seedlings is not regulated by the energy charge. Zn2+ ions are strong inhibitors of the NADH-reaction; their inhibitory effect on the activity is indirect and can be reversed by addition of ATP. A reaction sequence is formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GDH:

Glutamatdehydrogenase

α-Kg:

α-ketoglutarsäure

Literatur

  • Atkinson, D. E.: The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochem. 7, 4030–4034 (1968)

    Google Scholar 

  • Cleland, W. W.: The kinetics of enzyme—catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. biophys. Acta (Amst.) 67, 104–137 (1963)

    Article  Google Scholar 

  • Cleland, W. W.: II. Inhibition: nomenclature and theory. Biochim. biophys. Acta (Amst.) 67, 173–187 (1963)

    Article  Google Scholar 

  • Cleland, W. W.: III. Prediction of initial velocity and inhibition patterns by inspection. Biochim. biophys. Acta (Amst.) 67, 188–196 (1963)

    Article  Google Scholar 

  • Cohen, G.: Der Zellstoffwechsel und seine Regulation, S. 36. Braunschweig: Vieweg 1972

    Google Scholar 

  • Colman, R. F.: Regulation of enzymes by small molecules. Ann. N.Y. Acad. Sci. 193, 2–14 (1972)

    PubMed  Google Scholar 

  • Dalziel, K.: The interpretation of kinetic data for enzyme-catalyzed reactions involving three substrates. Biochem. J. 114, 547–556 (1969)

    PubMed  Google Scholar 

  • Dixon, M.: The determination of enzyme inhibitor constants. Biochem. J. 55, 170–171 (1953)

    PubMed  Google Scholar 

  • Euler, H. von, Adler, E., Günther, G., Das, N. B.: Über den enzymatischen Abbau und Aufbau der Glutaminsäure. II. In tierischen Geweben. Hoppe-Seylers Z. physiol. Chem. 254, 61–103 (1938)

    Google Scholar 

  • Fisher, H. F.: Glutamate dehydrogenase-ligand complexes and their relationship to the mechanism of the reaction. In: Adv. Enzymol., Vol. 39, p. 369–417, ed. A. Meister. (1973)

  • Frieden, C.: Glutamate dehydrogenase. III. The order of substrate addition in the enzymatic reaction. J. biol. Chem. 234, 2891–2896 (1959)

    PubMed  Google Scholar 

  • Frieden, C.: Glutamate dehydrogenase. VI. Survey of purine nucleotide and other effects on the enzyme from various sources. J. biol. Chem. 240, 2028–2035 (1965)

    PubMed  Google Scholar 

  • Gutfreund, H.: Enzymes: Physical principles. London-New York-Sydney-Toronto: Wiley-Interscience 1972

    Google Scholar 

  • Joy, K. W.: Control of glutamate dehydrogenase from Pisum sativum roots. Phytochem. 12, 1031–1040 (1973)

    Article  Google Scholar 

  • Kalckar, H. M.: Differential spectrophotometry of purine compounds by means of specific enzymes. III. Studies of enzymes of purine metabolism. J. biol. Chem. 167, 461–475 (1947)

    Google Scholar 

  • King, J., Wu, Yung-Fan: Partial purification and kinetic properties of glutamic dehydrogenase from soybean cotyledons. Phytochem. 10, 915–928 (1971)

    Article  Google Scholar 

  • Lé John, H. B., Stevenson, R. M., Meuser, R.: Multivalent regulation of glutamic dehydrogenases from fungi. Effects of adenylates, guanylates and acyl coenzyme A derivatives. J. biol. Chem. 245, 5569–5576 (1970)

    PubMed  Google Scholar 

  • Montgomery, R., Swenson, C. A.: Quantitative problems in the biochemical sciences, p. 31. San Francisco: W. H. Freman and Comp. 1969

    Google Scholar 

  • Pahlich, E.: Allosterische Regulation der Aktivität der Glutamatdehydrogenase aus Erbsenkeimlingen durch das Substrat α-Ketoglutarsäure. Planta (Berl.) 100, 222–227 (1971)

    Google Scholar 

  • Pahlich, E.: Sind die multiplen Formen der Glutamatdehydrogenase aus Erbsenkeimlingen Conformer? Planta (Berl.) 104, 78–88 (1972)

    Google Scholar 

  • Pahlich, E., Joy, K. W.: Glutamate dehydrogenase from pea roots: Purification and properties of the enzyme. Canad. J. Biochem. 49, 127–138 (1971)

    Google Scholar 

  • Prisco, G. di, Strecker, H. J.: Effects of phosphate and other ionic compounds on the activity of crystalline beef liver glutamate dehydrogenase. Europ. J. Biochem. 9, 507–511 (1969)

    PubMed  Google Scholar 

  • Richter, V., Rotzsch, W.: Effect of inorganic ions on kinetic properties of beef liver glutamate dehydrogenase. Rev. roum. Biochimie 7, 141–149 (1970)

    Google Scholar 

  • Sanner, T.: Activation of glutamatedehydrogenase from Blastocladiella emersonii by AMP. Biochim. biophys. Acta (Amst.) 250, 297–305 (1971)

    Google Scholar 

  • Sanner, T.: The unidirectional inhibition of glutamate dehydrogenase from Blastocladiella emersonii. Biochim. biophys. Acta (Amst.) 258, 689–701 (1972)

    Google Scholar 

  • Sanwal, B. D.: Allosteric controls of amphibolic pathways in bacteria. Bact. Rev. 34, 20–39 (1970)

    PubMed  Google Scholar 

  • Schmitt, J.: Das Differenzieren tierischer Proteine mit der vertikalen Polyacrylamid-Elektrophorese. Dtsch. tierärztl. Wschr. 75, 87–91 (1968)

    Google Scholar 

  • Shen, L. C., Fall, L., Walton, G. W., Atkinson, D. E.: Interaction between energy charge and metabolite modulation in the regulation of enzymes of amphibolic sequences. Phosphofructokinase and pyruvat dehydrogenase. Biochem. J. 7, 4041–4045 (1968)

    Google Scholar 

  • Silverstein, E., Sulebele, G.: Equilibrium kinetic study of the catabolic mechanism of bovine liver glutamate dehydrogenase. Biochem. 12, 2164–2171 (1973)

    Google Scholar 

  • Thompson, F. M., Atkinson, D. E.: Response of nucleotide diphosphate kinase to the adenylate energy charge. Biochem. biophys. Res. Commun. 45, 1581–1585 (1971)

    PubMed  Google Scholar 

  • Thurman, D. A., Palin, C., Laycook, M. V.: Isoenzymic nature of L-glutamate dehydrogenase of higher plants. Nature (Lond.) 207, 193–194 (1965)

    Google Scholar 

  • Webb, J. L.: Enzyme and metabolic inhibitors, vol. I, p. 149 ff. New York-London: Acad. Press 1963

    Google Scholar 

  • Yielding, K. L., Holt, B. B.: Binding by glutamate dehydrogenase of reduced diphosphopyridine nucleotide. Effects of regulatory (“allosteric”) reagents and ionic strength. J. biol. Chem. 242, 1079–1082 (1967)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Auszug aus einer Dissertation Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pahlich, E., Hoffmann, J. Über den Reaktionsmechanismus pflanzlicher Glutamatdehydrogenase und die Regulation der Aktivität durch Adenosinphosphate, die Energieladung und Ionen. Planta 122, 185–201 (1975). https://doi.org/10.1007/BF00388658

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00388658

Navigation