Skip to main content
Log in

Eine fördernde Wirkung von Blaulicht auf die Säureproduktion anaerob gehaltener Chlorellen

Blue-light-enhanced acid production of chlorella under anaerobiosis

  • Published:
Planta Aims and scope Submit manuscript

Summary

Under anaerobiosis the pH-value of the medium (0.002 M phosphate buffer) of a chlorophyll-free, carotenoid-containing mutant of Chlorella vulgaris (211-11h/20) drops slowly due to the excretion of acid fermentation end products. Blue light enhances this acidification of the medium (Figs. 1 and 2). Preliminary determinations of glycolic acid (color reaction with 2,7-dihydroxynaphthalene) indicate that there is about twice as much of this compound in the medium of an anaerobic culture kept in blue light as there is in the medium of one kept in the dark.

Addition of oxygen after a period of anaerobiosis in darkness or in blue light results in a greater O2-uptake by the previously illuminated cells (Fig. 3), indicating aerobic consumption of the acids released under nitrogen. The latter is proven by the experiment shown in Fig. 4, in which parallel cell samples develop a greater O2-consumption when suspended in the isolated media (phosphate buffer) of anaerobic cultures of the same organism instead of in fresh phosphate buffer, and a greater O2-consumption when suspended in the medium of an illuminated rather than in that of a dark anaerobic culture.

In experiments in which acid production is determined by measurement of the amount of 0.01 N NaOH required to keep the pH constant (Fig. 5), it can be shown that even traces of blue light can be effective in increasing the acidification of the medium of anaerobically kept cells; application of about 250 ergs cm-2 sec-1 of λ455 nm yields half-saturation (Fig. 6). Wavelengths around 470 and 370 nm are most effective in increasing this acid excretion; there is a minimum of activity around λ400 nm and no effect at all with yellow, red and far-red light (Fig. 7).

From the similarity between these intensity and spectral dependences and those for a light stimulation in respiration of the same organism found earlier (Kowallik, 1967), and from the fact that the acids released into the medium under anaerobiosis can be respired by the algae, we feel that both these increases are based on the same light reaction. The action of blue light in bringing about an enhancement in respiration might then consist in furnishing additional substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Bassham, J. A.: Kinetic studies on the photosynthetic carbon reduction cycle. Ann. Rev. Plant Physiol. 15, 101–120 (1964).

    Google Scholar 

  • Egle, K., and H. Fock: Light respiration — correlations between CO2 fixation, O2 pressure, and glycollate concentration. In: Biochemistry of chloroplasts, ed. T. W. Goodwin, vol. 2, p. 79–87. London: Academic Press 1967.

    Google Scholar 

  • Hess, J. L. and N. E. Tolbert: Glycolate pathway in algae. Plant Physiol. 42, 371–379 (1967a).

    Google Scholar 

  • ——: Changes in chlorophyll a/b ratio and products of 14CO2 fixation by algae grown in blue or red light. Plant Physiol. 42, 1123–1130 (1967b).

    Google Scholar 

  • ——, and L. M. Pike: Glycolate biosynthesis by Scenedesmus and Chlorella in the presence or absence of NaHCO3. Planta (Berl.) 74, 278–285 (1967).

    Google Scholar 

  • Kowallik, U., u. W. Kowallik: Eine wellenlängenabhängige Atmungssteigerung während der Photosynthese von Chlorella. Planta (Berl.) 84, 141–157 (1969).

    Google Scholar 

  • Kowallik, W.: Über die Wirkung des blauen und roten Spektralbereichs auf die Zusammensetzung und Zellteilung synchronisierter Chlorellen. Planta (Berl.) 58, 337–365 (1962).

    Google Scholar 

  • —: Chlorophyll-independent photochemistry in algae. In: Energy conversion by the photosynthetic apparatus. Brookhaven Symp. Biol. 19, 467–477 (1966).

    Google Scholar 

  • —: Action spectrum for an enhancement of endogenous respiration by light in Chlorella. Plant Physiol. 42, 672–676 (1967).

    Google Scholar 

  • —: Der Einfluß von Licht auf die Atmung von Chlorella bei gehemmter Photosynthese. Planta (Berl.) 86, 50–62 (1969).

    Google Scholar 

  • —, and H. Gaffron: Respiration induced by blue light. Planta (Berl.) 69, 92–95 (1966).

    Google Scholar 

  • —— Enhancement of respiration and fermentation in algae by blue light. Nature (Lond.) 215, 1038–1040 (1967).

    Google Scholar 

  • Nelson, E. B., and N. E. Tolbert: Glycolate excretion and metabolism in unicellular green algae. Plant Physiol. 43, Suppl. S-12 (1968).

    Google Scholar 

  • Pätau, K.: Zur statistischen Beurteilung von Meßreihen (eine neue t-Tafel). Biol. Zbl. 63, 152–168 (1943).

    Google Scholar 

  • Poskuta, J.: Photosynthesis and respiration I. Effect of light quality on the photorespiration in attached shoots of spruce. Experientia (Basel) 24, 796–797 (1968).

    Google Scholar 

  • Stiller, M.: The path of carbon in photosynthesis. Ann. Rev. Plant Physiol. 13, 151–170 (1962).

    Google Scholar 

  • Syrett, P. J., and H.-A. Wong: The fermentation of glucose by Chlorella vulgaris. Biochem. J. 89, 308–315 (1963).

    Google Scholar 

  • Tolbert, N. E.: Glycolate pathway. In: Photosynthesis mechanism in green plants. Publ. 1145 Natl. Acad. Sci., Natl. Res. Counc. 648–662 (1963).

  • Umbreit, W. W., R. H. Burris, and J. F. Stauffer: Manometric techniques and tissue metabolism. Minneapolis: Burgess Publ. Co. 1957.

    Google Scholar 

  • Urbach, W., and H. Gimmler: Stimulation of glycollate excretion of algae by disalicylidenepropanediamine and hydroxypyridinemethanesulfonate. Z. Naturforsch. 23b, 1282–1283 (1968).

    Google Scholar 

  • Wittingham, C. P., and G. G. Prichard: The production of glycollate during photosynthesis in Chlorella. Proc. roy. Soc. B. 157, 366–382 (1963).

    Google Scholar 

  • Wolf, V. J.: Nichtflüchtige Mono-, Di- und Tricarbonsäuren. In: Moderne Methoden der Pflanzenanalyse, ed. K. Paech und M. V. Tracey. Bd. 2, S. 478–582. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Zelitch, I.: The role of glycolic acid oxidase in the respiration of leaves. J. biol. Chem. 233, 1299–1303 (1958).

    Google Scholar 

  • —: Organic acids and respiration in photosynthetic tissues. Ann. Rev. Plant Physiol. 15, 121–142 (1964)

    Google Scholar 

  • —, and P. R. Day: Glycolate oxidase activity in algae. Plant Physiol. 43, 289–291 (1968a).

    Google Scholar 

  • ——: Variation in photorespiration. The effect of genetic differences in photorespiration on net photosynthesis in tobacco. Plant Physiol. 43, 1838–1844 (1968b).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowallik, W. Eine fördernde Wirkung von Blaulicht auf die Säureproduktion anaerob gehaltener Chlorellen. Planta 87, 372–384 (1969). https://doi.org/10.1007/BF00388322

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00388322

Navigation